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Introduction

e Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are
examples of fluids.

e Fluid mechanics is studied in two parts:

(i) Fluid statics - Study of the forces and pressures acting on statio
law and Archimedes’ principle and surface tensi
fluid statics.

(ii) Fluid dynamics - Study of motion of fluid and properties relate
forces acting on fluid. Bernoulli’'s theore

viscosity of fluid are discussed here. Fi dy@amics is studied in
two sections: Hydrodynamics and AerodynaMjics
10.1 Pressure
4
Pressure is the force acting on a surface per unit area_j iregkion perpendicular to it. It is
a scalar quantity and its SI unit is N /m? named #fasc ) in honour of the French

scientist Blasé Pascal. Its dimensional formulais LT Thus,

Force, F (N)

Pressure, P (Pa) 5 "
Area, A (m“)

A bigger unit of pressure is ‘bar’. 1 10" Pa.

1 atmosphere pressure (atm) = NQ > Pa or N/m? = 760 mm (76 cm ) of Hg column.
Density:

IIfer/isléy is the ratio o volume of an object. It is a scalar quantity and its S1I unit is
g/m°.

t inc essible. Hence, the density of a liquid remains almost constant at
re 4or small change in the value of pressure. Gases are compressible.
f gas decreases and density increases with increase of pressure.

y / Specific_density / Specific_gravity:

sity also known as specific density or specific qravity of a given substance is
f_its density to the density of water at 277 K (i.e., 4° C).”

dimensionless quantity and hence does not have a unit. Also,

Mass of an object
Mass of the same volume of water at 277 K

Relative ( specific) density of an object =

10.2 Pascal’s Law

“A change in pressure applied to an enclosed ( incompressible ) fluid is transmitted
undiminished to every point of the fluid and the walls of the containing vessel.” This
statement is known as Pascal’s law.
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Pascal’s law is also given as “If the effect of gravitation is neglected, the pressure at
every point in_an incompressible liquid, in equilibrium, is the same.”

Applications of Pascal’s Law:

The figure shows the principle of a
hydraulic lift used to raise heavy
loads. This device has two vertical
cylinders of different diameters
connected by a horizontal tube. A
liquid is filled in this vessel. Air-
tight pistons having cross-sectional
areas A4 and A ( A1 < Ag) are
fitted touching the liquid surface in
both the cylinders. According to
Pascal’s law, in equilibrium, the
pressure on liquid in both the arms
is the same. Hence,

Aq Ar

F—1=P1=P2=F—2:>F2=F1(%
a

Thus, a large force, F2, is generated all force, Fi, as the magnitude of F2 is

A
[A—zj times the magnitude of Fq.gfUsi PaScal’s law, devices like hydraulic lift, hydraulic
1

jack, hydraulic brake and hydra e re developed.

Pressure due to a fluid §ol
For liquid of density static equilibrium in a container, pressure at all points at the
same depth (or in o dS, at the same horizontal layer) is the same.

¢ Pal Atmospheric _

pressure
- - - - - Area of
Crosssection A
PA
Tdy height
(P+dP) A
- - - - - =3 Cylindrical volume of element

Pressure due to liquid column

Consider an imaginary cylindrical volume element of height dy and cross-sectional area A at
the depth y from the surface of liquid as shown in the figure.

The weight of liquid in this volume element is dW = pgAdy




If P and P +
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dP are the pressures on the upper and lower faces of the element, then PA

and (P + dP) A are the forces acting on them respectively. In equilibrium,

PA + dW = (P + dP)A
PA + pgAdy = PA + AdP
L. PY
dy
This equation is valid for any fluid (liquid or gas). It shows that the increases with
increase in the depth. Here, p g is the weight density, i.e., wei volume of the
fluid. Its value for water is 9800 N/m°. Pressure P at the depth = ¥ can be obtained by

integration as under.

P

IdP:

Pa

@0

h
[Ppady
0
As p is independent of pressure and constant f Q above integration gives

P- Py =pgh S P = Py + pgh

This equation

is valid only for inco esNgle Wluid, i.e., liquid and gives the pressure at

depth h in a liquid of density p.

Here, P (= Pa + pgh) is tj
pressure also known as the

The pressure

liquid does not de
shape or cross-sect

its container.

50 pressure whereas P - P, (= pgh) is the gauge
pressure.

at any p
This ngwn as

fiﬁd in the
nt shapes and
the bottom as

show e figure, the height of
li in all the
c is found to be the same

Buoyancy and Archimedes’ principal

“When a body is partially or completely immersed in a liquid, the buoyant force acting on it

is _equal to the weight of the displaced liguid and it acts in the upward direction at the

centre of gravity of the displaced liquid.”

This statement

Buoyant force

was given by Archimedes and is known as Archimedes’ principle.

weight of the displaced liquid ( or any fluid, i.e., liquid or gas)
decrease in the weight of the immersed body
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Proof of Archimedes’ Principle:

area A and volume V is immersed in a liquid of )
density p. Net force on the vertical surface of the -
hy

Suppose a solid of height h, uniform cross-sectional p Atmospheric —
pressure

solid is zero.

The pressure, Pq, on top of the solid in the downward
direction and, P2, on the bottom of the solid in the
upward direction are respectively given by

Pt = P, + pghy and P2 = P, + pgh2

P, - P1 = pg(h2 - hy) = pgh

rg@sure due to liguid column

(°" h2 - hy = h)
Hence, the resultant ( buoyant) force acting in the zxoection is

Fo = pgh-A = pgV

weight of the displaced liquid

Although the above result has be proged for a symmetrical solid of uniform height and
cross-sectional area, it is valid for_a id any shape.

With the help of Archimedes i specific density of solid or liquid, volume of a body
of irregular shape, the condggitue f the mixture and its proportion in an alloy may be
known.

Law of floatation:

When a body isgpartial completely immersed in a liquid, two forces act on it.
(i) Weight hQ body, W = psgVs{y and (ii) Buoyant force, Fpb = psg Vs T

are the density and volume of the solid body, while ps and Vi are the
voliime of the displaced liquid respectively. When the body is fully immersed in
= Vi (provided the solid body is not hollow or has no cavities).

> Fp, the body sinks. If W = Fp, the body remains in equilibrium at any depth.
rine works on this principle.

f- W < Fp, the body floats in liquid and if its partially immersed volume is Vp, then the
buoyant force Fp, = psg Vp balances the weight W of the body.

Ps _ Yo

P Vs

Thus, “ When the weight of a body is equal to the weight of the liquid displaced by a part
of the body immersed in it, the body floats on the surface of the liquid.”

W = Fp which implies psgVs = psg Vp.

This statement is known as the law of floatation which is used in designing a steamer.
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Fluid Dynamics:

10.4 Characteristics of fluid flow

(1) Steady flow: In a steady flow of fluid, the velocity of the fluid at each pojglaremains
constant with time. Every particle of the fluid passing t g given

point will have the same velocity. Let the

particles of fluid, P, Q and R have velocities

- - - V_}R

vp, Vq and vR respectively which may all

be different. But these velocities do not

change with time and all particles of the fluid

in its flow passing through these points will F”P

have these velocities at all times. Such a

condition is achieved only at low speeds, e.g., a gently flo tregm.

(2) Unsteady flow: In an unsteady flow of fluid, th the fluid at a given point
keeps on changing with time as infimotigpq of water during ebb and tide.

(3) Turbulent flow: In turbulent flow, the veldEit id changes erratically from point to
point and from time to ti erfalls, breaking of the sea waves.

(4) Irrotational flow: In irrotational fl

element of fluid h
angular velocity. A small paddle whe
in such a flow will move without rot

(5) Rotational flow: In rotat , an

elemeft o at each
point has net angular v ut that point. A paddle wheel kept in such a flow has
turbulent motion while tational flow includes vortex motion such as whirlpools, the
air thrown out of ex etc.

tin

(6) Incompreggible . In incompressible flow, the density of fluid remains constant with
time everywhere. Generally, liquids and sometimes even a highly
w Incompressibly. Flow of air relative to the wings of an aeroplane flying

is incompressible.

compressed
below sq

(7)

essible flow: In compressible flow, density of fluid changes with position and
time.

Non-viscous flow: In non-viscous flow, fluid with small co-efficient of viscosity flows
readily. Normally, the flow of water is non-viscous.

(9) Viscous flow: In viscous flow, fluid having large co-efficient of viscosity cannot
flow readily. Castor oil, tar have viscous flow.

10.5 Streamlines, Tube of flow and Equation of continuity

The path of motion of a fluid particle is called a line of flow. In a steady flow, velocity of
each particle arriving at a point on this path remains constant with time. Hence, every
particle reaching this point moves in the same direction with the same speed. However, when
this particle moving on the flow line reaches a different point, its velocity may be different.
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But this different velocity also remains constant with respect to time. The path so formed is
called a streamline and such a flow is called a streamline flow. In unsteady flow, flow lines
can be defined, but they are not streamlines as the velocity at a point on the flow line may
not remain constant with time.

Streamlines do not intersect each other, because if they do then two tangent n drawn
at the point of intersection and the particle may move in the direction of en®which
is not possible.

Tube of flow:

The tubular region made up of a bundle of
streamlines passing through the boundary of any
surface is called a tube of flow.

The tube of flow is surrounded by a wall made
of streamlines. As the streamlines do not
intersect, a particle of fluid cannot cross this
wall. Hence the tube behaves somewhat like a
pipe of the same shape.

Equation of continuity:

In a tube of flow shown in the figureggiihe chty of
a particle can be different at differgit ints,’ but is
parallel to the tube wall.

In a non-viscous flow, all p
section have the same vel

the fluid at cross-section
section Q, of area and vz respectively. Let p1 and p2 represent density of the

fluid at P and Q r I . Then, as the fluid can not pass through the wall and can
stgfyed, the mass flow rate (also called mass flux) at P and Q will

rt given cross-
ity. the velocity of
ea Aq, and at cross-

is known as the law of conservation of mass in fluid dynamics.
iquids, which are almost incompressible, p1 = pa.

Aivi = Agva ... ... (1) which implies Av = constant ... ... (2) or, Vv « %

Equations (1) and (2) are known as the equations of continuity in liquid flow. The
product of area of cross-section, A and the velocity of the fluid, v at this cross section, i.e.,
Av, is known as the volume flow rate or the volume flux.

Thus, velocity of liquid is larger in narrower cross-section and vice versa. In the narrower
cross-section of the tube, the streamlines are closer thus increasing the liquid velocity. Thus,
widely spaced streamlines indicate regions of low speed and closely spaced streamlines
indicate regions of high speed.
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10.6 Bernoulli’s equation

Bernoulli’'s equation is derived
in fluid dynamics with the
help of work-energy theorem.

The figure shows a streamline
flow of a non-viscous liquid
which is steady and irrotational
through a hypothetical pipe or
a flow tube.

One end of the pipe is
horizontal at a height y; above
some reference level and has
uniform cross-section A upto
some length.

The pipe gradually widens and
rises and becomes horizontal
at the other end which is at a
height y> from the reference
level and has uniform cross-
section As.

rivation of Bernoulli's equation

Now consider the portion of fluid s n shaded area as the system. Suppose the system

of fluid gets displaced from the itiofy, shown in figure (a) to that in figure (b) in a small

time interval. @

(1) The work done on Wiy, due to the pressure P; and hence by the force,
P1 A4, during dis at the left end is

Wi = force x d ent = P{1A{Alq

(2) The w ne @n the system, W,, due to the pressure P2 and hence by the force,
P> Ay d isplacement Al2 at the left end is
Wforce x displacement = - P2 A2 Al [ negative sign is because of force, P2 A2, and

displacement, Al>, being in opposite directions. ]
The work done on the system, W3, by the gravitational force, mg, is

W3 = force x displacement = -mg(y2 - y1) [negative sign is due to force, mg, and
displacement, (y2 - yq{), being in
opposite directions. ]

the total work done on the system,

W = Wy + W + W3 change in K. E. of the system [ By work-energy theorem ]

1 2 1 2
—mv = —mv
2 2 2

1 1
P1A1Al1 = P2A2Al, - mg(y2 - y1) = —mV22 - EmV12 A

2
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As the liquid is incompressible, the mass flow rate at both the ends must be the same.

pA1Al1 = pA2Alz = m = pV
ANy = AsAlL = % = Voo e (2)

From equations (1) and (2),

m m 1 2 1 2
Pi|—| - P2|—| - m - = —mvpy< - —mv
1(pj 2(pj g(y2 - v1) o Mv2 5 MV1
1 2 1 2
Pr = P2 = pgly2-y1) = _pva" - _pVy
1 1
Pi + Epv12 + pgyr = P2 + Epvz2 + pgy2 4
P + %pv2 + pgy = constant (for every goint streamline )
This equation is known as Bernoulli’'s equafo licable only to steady, irrotational,
incompressible and non-viscous streamline flQ|.
Dividing the above equation by p g,
P v2
— + — + y = constant
P9I 29

Each term in the above equdgion the dimension of length and hence every term is known
as ‘head’. The first term ressure head’, the second ‘velocity head’ and the third is
ad

known as the ‘elevatiq ’
Applications of B s equation A p throat

(1) Ventur§ te®( principle ) == e
PR LY r——— - ——
1 ] L “Fee= T
he venturie meter used et " :::._5?_'““““-~—_
the” flow rate of liquid in a 1-:_::_:-2 ] venturie tube
end of a manometer is - —F M
o the broad end of the =]
eter and the other end to the -
h
cross-sectional area of the broad end o
and velocity and pressure of liquid there B L
are A, vi and P respectively. The cross- 1T o manometer

sectional area of the throat and velocity
and pressure of liquid there are a, vo> and
P> respectively. The densities of the
liquid flowing through the venturie meter

and of the manometer liquid ( mercury )
are p and p’ respectively.
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Using Bernoulli’s theorem at points ‘1’ and ‘2° which are at the same elevation,

2

1 1 2
Pi + —pv = P2 + —pv
1 2P1 2 2Pz

1
Pt - P2 = EP(Vz2 - vi?)
= (p - p)gh (from the manometer reading )

, 1
(p' - p)gh = Ep(v22-v12)

2 a2

2
= lp {A— -v12 - v12] (using the continuity atigh, Avq = ava)
- lpv 2 ﬁ -1 ’

- 2 1

a

2(p' - p)gh
\' = a —_—
1 P(A2 -32) %
A

Using this value of v4, the volume flow , "can be calculated.

The velocity of liquid is low at the b nd high at the throat of the venturie tube.

In an automobile carburetor, air wthrough a venturie tube reducing its pressure at the

throat where the fuel is suc a mixed with proper amount of air for satisfactory

combustion. In a spray pum pushes the air which comes out of a hole with high
r@ssu

velocity. This reduces the ar the hole and sucks the liquid to be sprayed through
a capillary.

(2) The change i slre with depth:

The expression
case of Ber
surface i
and noti

r hydrostatic pressure in a stationary liquid can be obtained as a special
e(ﬁation taking vi = va = 0. Taking point 1 at a depth of h from the
d point 2 on the surface where pressure is atmospheric pressure, Pj,
y2 - y1, we get P1 = P; + pgh.

ic lift and Swing bowling:

dy in liquid experiences buoyant force which
wn as static lift. When the body is in motion
h respect to a fluid, it also experiences another
force known as dynamic lift.

L Y T U P
-
1

[ Pt St SN Py

>%

The figure shows a ball moving horizontally in air — " T —
without spinning. The velocity of air at points 1 ; W/ ;
and 2 is the same. So, by Bernoulli's equation, the =~ —» - —7 5

pressures at 1 and 2 would also be the same.
Hence the dynamic lift on the ball is zero.

L R
fad
i

L Pt et PR
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Now consider a ball which is moving horizontally

with velocity v’ and also spinning about the
horizontal axis passing through its centre and
perpendicular to the plane of the figure with its
peripheral velocity v. When the surface of the ball
is rough, it drags some air along with it. This
results in increase in velocity of streamline flow
of air at point 1 to vV + v and decrease at point
2 to vV - v. Hence pressure of air at point 1 is
less than the pressure at point 2 which gives
dynamic lift to the ball in the upwards direction.

Again, if the ball was spun about a vertical axis
lying in the plane of the figure making it rotate in
the horizontal plane, it may deviate towards the
off or leg stump. This is the reason for swing of
the ball in fast bowling.

(4) Aerofoils:

The figure shows an aerofoil which is a sofid
shaped to provide an upward vertical force e

moves horizontally through air and hence c
float in air.

The aeroplane wings are shaped
Air has streamline flow about the
angle between the wing an

motion, called an angle of
crowded streamlines above §the
high velocity and low
streamlines below the
and high pressure.

results in dynamic a
aeroplane in mogion to

The
s results in
ile the sparse
cate low velocity
ference in pressure
lift which helps the
in air.

ings

xternal force is required to maintain
fluids. A property of fluid responsible for
thisgi viscosity of the fluid.

ider "the steady flow of liquid on some horizontal

ary surface as shown in the figure. The layer

the liquid in contact with the surface remain stuck

it due to adhesive force and has zero velocity. The

velocity of layer gradually increases on moving

upwards from the surface and is the largest at the

top. In a steady flow, different layers slide over each

other without getting mixed which is called laminar
flow.

1+~— ¥

-v = 2

Laminar flow

In a laminar flow, the relative velocity between the consecutive layers of fluid results in
tangential force at the surfaces of the layers known as viscous force and the property of the
fluid causing it is known as viscosity. To maintain the flow, some minimum external force

has to be applied to balance the viscous force.
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Velocity gradient: In a laminar flow, the difference in velocity between two layers of liquid
per unit perpendicular distance, in the direction perpendicular to the
direction of flow, is called velocity gradient.

As shown in the figure ( previous page ), the velocity of the layers at distances x and
x + Ax from the surface in the direction perpendicular to the layers well as
perpendicular to the flow, are v and v + Av respectively.

average velocity gradient of the layers lying within distance A x

A
and for a given layer, velocity gradient = lim av g
Ax—>0 Ax X
The unit of velocity gradient is s .
- . *
Co-efficient of viscosity:
The viscous force between two adjacent layers of a Igminar€flow at a given temperature,
. dv
F « area (A) between the two adjacent laye ax
dv dv
F « A— o, F = nA—,
dx n dx
where n is a constant known as o-eMcient of viscosity of the fluid. Its magnitude

depends on the type of the fluid andWs teWpperature.

-2

It's C.G.S. unit is dyne-s-c alled poise and MKS unit is N-s-m 2. Its dimensional

formula is M'L- T,

Taking A = 1 unit a 1 unit in the above equation, n = F.

osity can also be defined as the viscous force acting per unit
d per unit velocity gradient between two adjacent layers in a

laminar flow luidg,
Note tha ficient _of viscosity of liquids decrease with increase in temperature,
while _th ses _increase with the increase in temperature. At normal temperature,

igher co-efficient of viscosity than that of water and the relative co-efficient of
lood, Mpiood / Nwater iN the temperature range of 0° C to 37° C remains almost

Stokes’ Law

The resistive force ( viscous force) on a small, smooth, spherical, solid body of radius r,
moving with velocity v through a viscous medium, of large dimensions, having co-efficient of
viscosity n is given by

Fv = 6@tnrv.

This equation is called Stokes’ Law which can be verified using dimensional analysis.
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Free fall of a sphere in a fluid and its terminal velocity:

Suppose a small, smooth, solid sphere of radius r of material
having density p falls freely in a fluid of density Po (< p) and

co-efficient of viscosity m as shown in the figure.
The figure shows the forces acting on the sphere at three

different instants. The forces acting on the sphere at an instant
when its velocity is v are:

(1) its weight, F1 = mg = %n r3 Pg ( downwards ),

(2) the buoyant force by the fluid,
Fo = mog = %n r3 P, 9 (upwards), @ . 3 4

where mg = mass of fluid displaced, and
(3) the resistive force opposing the motion as Qxes’ law,
Fv=671nrv ( %

the resultant force acting on the sp

F=F-F-F = (1)

4
F = pg - = 5nr3g( P - Py) e e e (2)
¢
If the acceler f the sphere is ag at t = 0,
4

0 = 5n r3pa° e <D

equations (2) and (3),

4 . (Pp-py)

Pao = o r3g(p - Py ) S ag =T°-g e e (8)

Initially, before the sphere starts its motion in the fluid, its velocity is zero and there is no
resistive force acting on it. It accelerates downwards and its velocity increases. The upward
resistive force on the sphere also increases with the velocity. This reduces the net downward
force on the sphere. As a result, the velocity of the sphere increases while its acceleration
decreases. At a definite high velocity, the resultant force on the sphere becomes zero and
thereafter the sphere continues to move with the uniform velocity, v, known as the terminal

velocity. At v = v, the net downward force becomes zero.
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_ . _ 4 .3 _ 4 3 ) _
F = F1 - F2 Fv-gnr Pg E’” Pod - 6mnrv=20

This equation is used to determine the coefficient of viscosity of the fluid expgyiben

A bubble of air in a liquid rises up due to lower density of air as compa to Water and
reaches an upward terminal velocity.

10.9 Reynolds number

The type of fluid flow in a given pipe depends on

(i) the coefficient of viscosity (mn) of the fluid, ¢
(ii) the density (p) of the fluid,

(iii) average velocity (v) of the fluid and

(iv) the diameter (D) of the fluid %

and is given by the magnitude of thefdi less number called Reynolds number, N R
formed by the combination of these f hy I quantities as under.

Reynolds number, Nr = %
tr

For NR < 2000, the flo mline,
NRr > 3000, th i bulent and for
2000 < NR < 00, ‘he flow is unstable and its type keeps on changing.

If n = OQglt luid is non-viscous ), Ng tends to infinity. Hence the flow of non-viscous
fluids cafyn be streamline, for all values of v > 0.

ce tension

hesive force = inter-molecular attractive force between molecules of the same matter.

Adhesive force - attractive force between molecules of different matters.

e Range of inter-molecular force (ro) - the maximum distance upto which the attractive
force between two molecules is significant.

o Sphere of molecular action - an imaginary sphere of radius ro, with molecule at the centre.
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Consider molecules P, Q and R of a liquid along with
their spheres of molecular action as shown in the
figure.

The sphere of action of molecule P is completely
immersed in the liquid. As P is acted upon by equal
forces of attraction from all sides, the resultant force
on it is zero keeping it in equilibrium. All such
molecules at a depth more than ro, will be in similar
situation.

Molecule Q is at a depth less than ro. Part FOEF of  Sphereqfof i olecular action

its sphere of action is outside the liquid and contains

the molecules of air and liquid vapour. As the density of cules 1h this part is less than
that in GNHG part which contains only liquid molecules, t lt# force due to these two
parts is in the downward direction. Molecules in CDHG EF parts being equal, the
resultant force on Q due to molecules in these h zero. Thus, there is a net

downward force on molecule Q.

A layer of thickness ro, below the free surface liquid is called the surface of liquid.
As we move upwards in this layer, the d wa ultant force keeps on increasing and
becomes maximum on the molecules like R t ree surface AB. Thus the molecules in
this surface layer will have tendency to inSge the body of the liquid. As some of the
molecules go down, density below th rfac liquid increases and it decreases on moving

reased inter-molecular distance below the surface
molecules lying in it experience force of tension
nsion.

upwards in the surface. This result
and more within the surface. As g.re
parallel to the surface known a

“The force exerted by thefgm es lying on one side of an imaginary line of unit
length, on the molecul i on the other side of the line, which is perpendicular
to the line and par, to ®he surface is defined as the surface tension (T) of the

liquid.”

The forc tension is parallel to the surface, while the resultant cohesive force on
the mole perpendicular to the surface and towards inside the liquid.

not felt. At the edge of the surface, there are molecules only on one side and
the surface tension manifests here parallel to the surface and perpendicular to the
rface towards the middle of the surface.

Surface tension in_context of potential energy:

Work has to be done to bring a molecule from a point below the surface to a point on top
of the surface against the downward force acting on it. Hence, when such a molecule
reaches the surface it acquires potential energy. Now a system has a tendency to remain in
the state of minimum potential energy. Thus molecules in the surface of a liquid has a
tendency to reduce its potential energy. So the surface of the liquid has a tendency to
contract and minimize its area.




10 - FLUID MECHANICS Page 15

The molecules reaching the surface do not occupy place between the molecules already
present in the surface, but generate a new surface. This means that the surface gets
expanded. The whole surface of a liquid can be considered to have been generated this way.
Thus, the molecules in the surface of a liquid possess potential energy equal to the work
done on them in bringing them to the surface.

Hence surface tension can also be defined as “the potential energy stored j
the liquid per unit area.” By this definition, its unit is Jm 2 which is the
Surface tension of a liquid depends on the type of the liquid a
decreases with temperature and becomes zero at a critical temper

the type of the medium which the liquid is in contact with.

Surface - energy: N

Surface tension, T, is the amount of energy

to be given to the surface to increase its -
area by unity at constant temperature. But E ]
the temperature of the surface decreases as
it expands. Hence, heat has to be supplied a sdrface energy [\
to the surface from outside to maintain it £
temperature. I

3 =

-5} "'"*-\'_

Total surface energy per unit 2 £ a0 —— \
Potential energy ( due to surface te 2 g surface tension \
Heat energy. 7 £

= \"“J
w0

t e of 100 200 300 400
urf ension.

ce energy temperature (°C) ——

Thus, at any temperature
surface energy is more t
Both the surface tension an
decrease with temper, an@ become zero

at the critical temp e e figure shows the graphs of surface tension and surface
energy versus temper r water both of which become zero at the critical temperature of

tangular frame ABCD on which a wire PQ can be slided over the sides
light string tied to PQ as shown in the figure.

D A el D
™ i it L ™ external
Y T — I Ty
/_ — d—fﬁ/_,_f‘_ force
—
M F=2T:? e
s \n s
1 —
(—
= J.z' 'k.k [T [ JJ

A thin film of liquid formed on Expansion of the film

a rectangular frame
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A thin film ABQP is formed by dipping the frame in soap solution and holding the wire PQ
in position with a thread. If the string is released, PQ slides inwards and the film contracts.
This shows that the surface tension manifests itself on the edge of the surface of the liquid
perpendicular to the edge and parallel to the surface.

Now displace the wire by x by pulling the string with a force slightly more tha force of
surface tension. If T is the surface tension of the solution and ! is the len o) e wire
PQ, then the force acting on the wire is

F = 2T1 (The multiple ‘2’ is because the film has two surfaces.)

work W = Force x displacement = 2TIx = T(2Ix) = T (
work W = T for AA = 1 unit
Thus, surface tension can also be defined as the work todncrease the area of the

surface by 1 unit.

Experiments show that the surface tension does notf§ghande on expanding the surface. This
indicates that the molecules coming to the surfa ccupy place between the already
present molecules but create a new surface of t

10.11 Drops and bubbles

Free surface of liquids has tendenc imize its area due to surface tension. Since
spherical surface has minimum aregffor given volume, drops and bubbles of liquids are
always spherical.

4

Consider a bubble of
radius R as shown in the
figure. The pressures insi

e

and outside are P; -3 “— -

(P; > Po) respectivel h

pressure on t con

surface is s 4nore A ™
than that o convex T

surface. face

uid forming the wall of the bubble be T.

blowing the bubble, its radius increases from R to R+ dR and its surface area
from S to S +dS. The work done in this process can be calculated in two ways.

ork, W = force x displacement = pressure difference x area x displacement

= (P; = Po) 4TR%-dR oo oo i e e e e e (1)
(2) The surface area of the bubble of radius Ris, S = 4= R?
the increase in the surface area is, dS = 8T®RdR

But the bubble in air has two free surfaces

total increase in its area = 2 x 8TRdR = 16 TtRdR
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work, W = surface tension x total increase in area = 16 tTRdR ... (2)

omparing equations an , ; = Po TR - = T
Comparing equati (1) and (2), (P;-Po)4nR?-dR = 16t TRdR

For a bubble formed in a liquid or a liquid drop which has only one free suriige,

2T
Pl - Po = ?
10.12 Capillarity
“The phenomenon of rise or fall of a liquid in a capillary, rtl’cal in a liquid, due to its

property of surface tension is called capillarity.”

When a glass capillary of small
bore is held vertical in water, water
rises in the capillary and when held
in mercury, mercury falls in the
capillary as shown in the figure.
Also, note that water wets the glass
while mercury does not. The
meniscus of water in the capillar
is concave while the meniscu
mercury is convex.

Phenomenon of capillarity
Suppose liquid rises to h in a capillary of
radius r held verti t liquid as shown in the
figure. The radius of e”meniscus of liquid in the

capillary is R.

{a) in water {bh) in mercury

|
Ed

The tangent glra a®a point P, where the surface of
meniscus js act with wall of the capillary, makes

e wall. 6 is known as the angle of
he Tuid with the matter of the capillary.

h ________
Lj 6 < 90° rise while those with 6 > 90° fall | | | — —— —_
i ilary. ~—.....................,,,.,.” Lo
figure, £ OPQ = 6 in right-angled A OPQ. Ra, [ R ]
B
cos 6 OP _  Radius of the capillary (r) | "= T T T T T T T T
~ 0Q  Radius of the meniscus (R) T T
R= — (1) T
~ cos® Tttt Column of liquid in a capillary

The pressure on the concave surface of the meniscus P, > P;, the pressure on the convex
surface.
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Po - P; = % ( because, the liquid has one free surface.) ... ... (2)

Also, for equilibrium, the pressure at point B is the same as at point A which is P, as both
are at the same horizontal level.

Po-P; = hpg
where p = density of the liquid and g = acceleration due to gravity.

Comparing equations (2) and (3), % = hpg

Rhpg rhpg . .
T = = utting the value of R eq@ation (1
5 2005 6 [ putting @ o@ation (1)]

For mercury and glass, 6 > 90°. Hence, cos 0 isfinegallve. Therefore, mercury falls in a

glass capillary and its meniscus is convex.

P; - Po = % should be taken. As P; - P

> Po. Thus in equation (2),

the final result remains the same.

10.13 Detergent and surface tengi

Stains of grease or oil on the cloth
water does not wet the grease il.
of the molecule of detergent

water molecule and the oth
or grease. This forms anaj
on adding detergent tg

aregot removed by water alone as
adding detergent, the broad end
in the figure is attracted to the

attracted towards the molecule of oil
etween water and oil or grease. Thus,
surface tension of the solution is less
ts grease or oil and removes the dirt.

(1) Velocit of’a liquid having co-efficient of viscosity, m, in laminar flow through a
tub r and length [ across which there is a pressure difference p is given
b
p 2 2
Vv = — (r© -x
4nl! ( )

) Wolumetric flow rate, V, of liquid in the above case is given by

npr4
8n!

This equation is called Poiseiulle’s Law.




