1. Electric Charge and Fields

Quantisation of electric charge \rightarrow All observable charges are always some integral multiples of elementary charge $e \ (= \pm 1.6 \times 10^{-19} \text{C})$.

$$q = \pm ne$$
 Where, $n = 1, 2, 3, ...$

Coulomb's law →

$$F = \frac{1}{4\pi\varepsilon_0 k} \frac{q_1 q_2}{r^2}$$

Where,

 $\epsilon_0 \to Absolute permittivity of free space$

 $k \rightarrow \text{Dielectric constant}$

The product $\varepsilon_0 k = \varepsilon$ (absolute permittivity of the dielectric medium)

If the two point charges are located in vacuum, then

$$k = 1, \varepsilon = \varepsilon_0$$

$$\therefore F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

The value of $\epsilon_0 = 8.8542 \times 10^{-12} \, \mathrm{C^2 \, N^{-1} m^{-2}}$

The value of
$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \,\mathrm{Nm}^2 C^{-2}$$

Relative permittivity or Dielectric constant $\rightarrow k$ or $\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$

Principle of superposition of electric forces → When a number of charges are interacting, the total force on a given charge is the vector sum of the individual forces exerted on the given charge by all the other charges.

Continuous charge distribution →

• Linear charge density:

Surface density of charge:

Volume density of charge:

Electric field strength:

$$\vec{E} = \frac{\vec{F}}{q_0}$$

Where, q_0 is a positive test charge

Electric field due to a point charge:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

Electric field due to a uniformly charged ring at a point on the axis of the ring is

$$E = \frac{1}{4\pi\varepsilon_0} \frac{qx}{\left(r^2 + x^2\right)^{\frac{3}{2}}}$$

Where,

 $x \rightarrow$ Distance of the point from the centre of the ring

 $r \rightarrow \text{Radius of the ring}$

Electric dipole moment $(\vec{p}) \rightarrow$

$$-q$$
 $+q$ $+q$

$$p = q \times 21$$

The direction of \vec{p} is from negative charge to positive charge.

Electric field intensity due to an electric dipole at a point on its axial line is given by

$$E = \frac{1}{4\pi\varepsilon_0 k} = \frac{2\,pr}{\left(r^2 - l^2\right)^2}$$

Electric intensity due to an electric dipole at a point on the equatorial line is given by

$$E = \frac{1}{4\pi\varepsilon_0 k} = \frac{p}{\left(r^2 + l^2\right)^{\frac{3}{2}}}$$

Torque

In a uniform electric field E, a dipole experiences a torque τ , given by $\tau = p \times E$

Electric flux

The flux $\Delta \phi$ of an electric field E, through a small area element Δs is given by $\Delta \phi = E \cdot \Delta s$

The vector area element Δs is

$$\Delta s = \Delta s \hat{n}$$

Where, Δs is the magnitude of the area element and \hat{n} is the normal to the area element. For an area element of a closed surface, \hat{n} is, by convention, taken to be the direction of outward normal.

Gauss's law \rightarrow The flux of electric field through any closed surface s is $\frac{1}{\epsilon_0}$ times the total charge enclosed by s.

 Electric field intensity due to an infinitely long straight wire of linear charge density λ is given by

$$E = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r}$$

 Electric field intensity due to a uniformly charged infinite plane sheet of surface charge density σ is given by

$$E = \frac{\sigma}{2\varepsilon_0}$$

• Electric field intensity due to a uniformly charged thin spherical shell of surface charge density σ is given by

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} (r \ge R)$$

$$E = 0(r < R)$$

Where, r is the distance of the point from the centre of the shell and R the radius of the shell

