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5.1 Work

“The product of force and displacement ( in the direction of force ), during
which the force is acting, is defined as work.”

When 1 N force is applied on a particle and the resulting displacement of the pfirtic2, in the
direction of the force, is 1 m, the work done is defined as 1 J (joule). Fac)dimeisional

formula of work is M‘I L2T’2.

The displacement may not be in the

direction of the applied force in all 4 Fsin@ F
cases. In the figure shown, the .
displacement, d, makes an angle r o
6 with the applied force, F. According 8 5 | I
to the definition of force, Fods @ | :
| !
Work, W = force x displacement in
the direction of the € d ?
force

F(dcos®) = (Fcos0)(d)
(the component of force in the fliireg ion of displacement) x ( displacement)

(i) For 8= m/2, work W = 0, even/ n)F \nd d are both non-zero. In uniform circular
motion, the centripetal force acti#|, on ) particle is perpendicular to its displacement.
Hence, the work done due to ceptripctal force during such a motion is zero.

(ii) If 6 < m/2, work done is (fosi’.\p aiid is said to be done gon the object by the force.

(iii) If /2 < 6 < 7, work.d ne is"negative and is said to be done by the object against the
force.

5.2 Scalar product 4 t' /o vectors

— —
The scalar pgaduct of@itwo vectors, A and B, also known as the dot product, is written by
putting a @at (1) witween the two vectors and is defined as:

- — L= —
A -B .l 1Bl cosé = ABcos 0, where 6 is the angle between the two vectors.

To'\ obtain the scalar product of

- —
\ a.d B, they are to be drawn from
< common point, O, with the same
magnitudes and directions as shown in
the figure.

ﬁ.
A

M is the foot of perpendicular from the

- =
head of A to B. OM (=Acos 8) is

the magnitude of  projection of
— —
A on B.

=)
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- =

Similarly, N is the foot of perpendicular from the head of B to A and ON (=B cos#8) is the
— —

magnitude of projection of B on A.

- -
A-B = ABcosO® = B(Acosf) = (B)(OM)
— - —
= (magnitude of B ) ( magnitude of projection of A on B )
or
- —
A-B = ABcosd® = A(Bcos8) = (A)(ON)

— - —
( magnitude of A ) ( magnitude of projection of B oi_ A )

Thus, scalar product of two vectors is equal to the productsmf magnitude of one vector with
the magnitude of projection of second vector on the directi n & the first vector.

The scalar product of vectors is zero if the angle bety een the vectors 6 = 1 /2, positive if
0 £0 < m/2 and negative if /2 < 6 = T.

Properties of scalar product

(1) Commutative law:

- = >
A-B = ABcos6 = BAcostl= LA
Thus, scalar product of two vec/urs ‘s cymmutative.

(2) Distributive law:
— — — : —
OP = A, 0OQ 7,B 'wmna OR =
as shown in the [ guzs.. .N¢w,

-
C

- > >

- - —
B C .A||~')rojection of B+ C on Al

%
A-(

+

)

L3
-

LN —>
%l (ON) = | Al (OM + MN)

—> —>
| Al(om) + | Al(MN

Y > —> — — —
|A||proj.of B on Al +|A||proj.of C on Al

- - -
A-B + A:-C

Tnus, scalar product of two vectors is distributive with respect to summation.

- > —
(3) ¥ AIl B, 6 = 0°, A- = ABcos0° = AB and

— — —> —> 2 — - —>
A-A = lallal =a%2 . 1Al = VA-A

Thus, magnitude of a vector is equal to the square root of scalar product of the vector with
itself.

%
B
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— — - —
(4) If AL B, 8=90° .. A-B =ABcos90° =0
Thus, the scalar products of two mutually perpendicular vectors is zero.

(5) Scalar products of unit vectors in Cartesian co-ordinate system:

VANA A A AN AN FARAY AN NOA
i“i = jj = kek =1 and i-j = j-k = k-i =0

(6) Scalar product in terms of Cartesian components of vectors:

—> A AN AN —> AN PN A
f A = Axi + Ayj + Ak and B = By i + By + 3wk, then
BN A A A A A Y
A'B=(Axi +ij+Azk)°(Bxi +Byj+Bz'\:
= AxBx + AyBy + A;B;
- —
(7) A-B = ABcos®
- -
A-B AxBx +fAy v + AzBz
€0 = a8

\/sz + A2 S A-“\/sz + By? + B;?

This formula is used to find the angle b:itwe n tio vectors.

Ai

Ll

%
5.3 Work done by a variab!s " »rc. R

‘A force varying with positi rd or time —3 B
is known as the variaui¢ fazce.’ ~FAT, B

[yl
I
4
|

To find work donel urdeft a variable force, ﬂg -

consider a two-dime sioril motion of a ‘A

particle moving{along a curved path AB as <

shown in tha fiwre®under the effect of a s

variable force: < \curved path is divided into
- —

infinitesimlly "Sall line segments Alq, Alp, ... ;
— —
’ L' vﬂl'i

> — A
Mot \Fq, Fp,..., F, be the forces acting on

— —
" » particle at line segments, Alq, Alp, ...,

N
Al,, respectively. As the line segments are very small, the force over each segment can be

considered constant.

The total work as the particle moves from A to B can be obtained as the sum of the work
done for different line segments as under.

- - - - - -
Total work, W = Fq-Al4 + Fp-Al, + F,- Al
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B, o B
If lm , then W= [F-dl = [Fcos@dl
%
la 1150 A A

For one-dimensional motion of the particle along X-axis and force acting_in e direction of
motion as shown in the figure,

B X,
Work, W = dexcoso° = J'Fdx Y
A X4

where x4 and x2 are the x-coordinates of A and B
respectively.

T —n

It can be seen from the figure that for a smfn
displacement dx, the force F is almost cons ant
and hence work done is Fdx which is the &z ea (f
the strip. Total work for motion of the [ rticle
from A to B is the sum of areas of fuc), siiios

which is the area under the curve bel.. en x)= x4 0
and x = Xo.

For a particle moving under th': ef.itht of a constant force Y
N —3
on a curved path from the |»oinc’y to rp as shown in

LY
ra

2, 5 - > -
the figure, work don  #W4 = IF-dr = F:(rpg - rq) —2

-
Pt
-
-
[

-
"1

_)
(since, F is constant) —

Thus, " 2 “vork done by the constant force is the scalar
prefiuct)orthe force and the displacement vector of the
pa ticic!

W
-

2.4 _iinetic energy

“The capacity of a body to do work, by virtue of its motion, is known as the
kinetic energy of the body.”

More the speed of the object, more is its kinetic energy. The net force acting on a body
produces acceleration or deceleration in its motion thereby changing its velocity and kinetic
energy. Also, work is done by the net force on the body while causing its displacement.

- -
The work, W, done by the force, F , on a particle of mass, m, causing acceleration, a and
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%

displacement, d is given by
- - - -
W= F-d = m a-d .. .. ... ... ... (1)
. 2 2 > )
Using theresult, v: = vo° = 2 a-d in the above equation,
2,2
W = m [%\] = % mv2 - %mvoz, where vg and v are the spn{eds)before and

after the application of force respectively.
= K - Kp = change in kinetic energy = AK,

where Ko and K are the initial and final kinetic energies. The unit“37 kinetic energy is the
same as that of work, i.e., joule.

Thus, “the work done by the resultant forces@tn“ 2 ¥ody, in the absence of
dissipative forces, is equal to the change in (he kinetic enerqy of the body.”

This statement is known as the work-energy the(ren’.

When a particle performs uniform circular< motic..,” the centripetal force acting on it is
perpendicular to its tangential instantanedu<)hdis lacement and hence no work is done by the
centripetal force and the speed and kizm ic er)rgy of the particle do not change.

If the body is displaced in the directign of“the force acting on it, work is done by the force
on the body and is positive. Tie [jine.)> energy of the body increases in this case. If the
displacement of the body is ag.infit { %> force acting on it, work is done by the body and is
negative. The kinetic energy | f th., bidy decreases in this case.

n .12 = m2 V= p_’ where p = linear momentum of the body.

1 2.2 2
Also, kinetic energy, [ = —

3
N
3

5.5 Potential ¢aergv

“The caacity o. a body to do work, by virtue of its position in a force field
or due i) its configquration is known as the potential enerqy of the body.”

Gralitati»nar potential energy:

Zhe\gravitational acceleration, g, due to the Earth’s gravitational force can be taken as
vonsiant for heights much smaller as compared to the radius of the Earth.

If a body of mass m moves from height yq to height y2 in the Earth’s gravitational field,

A A
the force on the body = -mg j and its displacement =(y2 - y1)j
- -
the work done, W = F-d
A A
-mg j-(y2 - y1)]
mgy1 - mgy2 ... ... (1)
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Here, the work depends on the initial and final positions of the body and not on the path
followed. Also, there is no loss of

mechanical energy if friction and C i K

air resistance are ignored. In this = b : T

case, the force is known as b---o b-g--

conservative force and the field as

conservative field.

If vq4 and v2 are velocities of the /4

body at heights y1 and vy

respectively, then according to [

work-energy theorem, l mg 1 myg

The work done, W = 1mv22 - ¥
2 :"Fg 2

1mV12 = mgyr - mgy2 [ from

2 T T

equation (1) above ] Lo | \

Here, mgy: and mgy, are the I A T b---d

potential energies of the body at 1 1

neights y1 and yz respectively from b £, /777;?7777777777777777777777777777777777777777?;'

the surface of the Earth due to the

Earth’s gravitational field. Surface
of the Earth is the reference level fronf sheir) potential energy is calculated. Besides, the
Earth’s surface, any other level can begs10se.) as reference level.

Thus, gravitational potential energv_ o1 3 bouy of mass m at height h from the surface of the
Earth is U = mgh.

1 a
From the above equation, {+mvq{ + mgy; = %mvz2 + mgy2

A

Thus, in a conservative_field, | he ‘'mechanical energy, E, which is the sum of kinetic energy

(K = %mvz) and po| 3p%al{:nergy (U = mgh) remains constant.

E=K+ U

Thus, the smechaii al energy of an isolated system of bodies is conserved in a conservative
field. Thit)\swiniaent is known as the law of conservation of mechanical energy.

5.6, Elosii )\ potential energy: ( Potential energy k
di > wyt e configuration of a system)

O end of an elastic spring of negligible mass
and obeying Hooke’s law is tied with a rigid wall
and to the other end a block of mass m is tied.
The block is at x = 0 when the spring is not
extended or compressed. On displacing the block,
the restoring force is produced in the spring
which tries to restore the block to its original
position.

M
SRR
=

|

k.

%

The restoring force is directly proportional to the
displacement of the block and is in a direction
opposite to the displacement.

]
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F <« - x or F = - kx,

where k is the force constant of the spring which is defined as the force required to pull or
compress the spring by unit displacement. Its unit is N/m and its dimensional formula is

m'LOT2

Work done by the applied force on the spring is,

X X 271X 1
w = Ikxdx=ijdx=k{x—} = 2 kx?
2 2
0 0 0

This work done on the spring is stored in the form of elastic potentiai energy of the spring.
Taking the potential energy to be zero for x = 0, for #naige i» length equal to x, the
potential stored in the spring will be

U = 1 ke
2

Relation between force and potential enerqy

The change in kinetic energy, AK, of the pa.iicle s equal to work, W, done on it by force,
F, in displacing it through a small distan¢e, “ix.

AK = W = FAx

But, by the law of conservation of/{mi shanical energy,

AK + AU = 0 = Fax 4 AU’ 0 o F= .2V
Ax
instantaneous viiue "of | F = = lim & = = du This equation holds only in the
Ax — 0 Ax dx
case of conservative forces.
In the case of a “prin@, the potential energy, U = % kx?
-~
F = x \ " -1k(2x) = =kx
dx 2
58 a\veer

‘1.0 time rate of doing work is known as power.” or “Power is defined as
% e work done per unit time.”

If AW is the work done in time interval At, the average power in time interval At is

<P> = i—vtv and instantaneous power at time t is
P = |im AW _ dW
At—»0 At dt

- -
If dW is the work done by a force F during the displacement dr, then
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%
dw = dr - = -
= ot = F-— = F-v, where v is the instantaneous velocity at time t.
dt

Power is a scalar quantity like work and energy. Its unit is watt (W ). 1 W = 1 J/s. Its
dimensional formula is M'L%T>,

1 kilowatt (kW) = 10° watt (W) and 1 megawatt (MW) = 10° w.

In British system, unit of power is horsepower (hp). 1 hp 746 W.
1 kilowatt-hour (kWh) is the electrical unit of energy (work) as the ploduc.a™power and time.
1 unit of electrical energy = 1 kWh = 3.6 x 10° 4.

5.8 Elastic and inelastic collisions

e In elastic collision, total linear momentum and tot | kingtic energy of the colliding bodies
are conserved.

¢ In inelastic collision, total linear momenturm 'Sf {ihel Colliding bodies is conserved, but part
or whole of the kinetic energy is lost in ¢ her ">5fis of energy.

e In both, elastic as well as inelaiitic coli.sions, total energy ( energy of all forms,
mechanical, internal, sound, etc.) {na ‘otal “inear momentum are conserved.

Inelastic collision in one di:ficiasiun:

Partly inelastic collision:

]

Suppose a sphere Agmfymals mq moving with velocity vq in X-direction collides with
another sphere of me s £ing rmoving in the same direction with velocity va. (vq > v2)

% Yy vy’ vy
—3 — — —
my % My % my % my %
X X

Lei) vi~“and v2’ be their velocities in the same ( X) direction after the collision which we
wino to find.

~_cording to the law of conservation of linear momentum,

mqvq + mava mqvqy + mav?o’

or, mq(vy = vq’) ma(v2 = v2’') ... ... (1)

Now, a parameter known as coefficient of restitution, e, is defined as under:
Co-efficient of restitution, e = V2 = vq _ veloc.lty of separation after the coII|.5|.on
Vq = V2 velocity of approach before the collision
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For partly inelastic collision, 0 < e < 1.
Vo = Vvqe = e(vq=V2) i i wr e e (2)

Solving equations (1) and (2) for v¢ and vy, we get

' m4 = moe 1+e)m 1+e)m mqe =.'n
- mq-mge yma andv2'=( ym . M 2 )

v
1 mq + Mo mq + My 2 mq + Mo Mg+ M

Thus, vi° and v2’ can be calculated from the above equations.

Completely inelastic collision:

Putting e = 0 for completely inelastic collision in the above equations,

' mqv4q + MaVva

vi = vp' = —————%2% = v (the common velocitvy" the spheres after collision)

mq + Mo
Thus, in completely inelastic collision, the colliding \bodi's move jointly with a common
velocity.

Here, the kinetic energy before collision, K; 5 én Ve %mzvz2 and

Pz

the kinetic energy after collision, Ky =_F-(ni, +%n3 )v2 = %(m1 + map ){

mqv4q + MmaVo 2
mq + Mo
mimy (vq - vp)?
2(mq + m{)
The negative sign indicates t'at t''e K netic energy decreases during inelastic collision.

Kr = Ki =

Elastic collision in one ¢ inension:

Putting e = 1 for elafic c llision in equation (2), we get vz' - v1' = (vq = v2)
Vi + V.= 2 vy’ cer e e e e (3)
Multiplying“aawitions (1) and (3), we get

N (9 - v1’2) = mz(vz2 - vz’2 )- Multiplying by % and rearranging,

2 2

1 2 1 2 1 1
= v + — mav = —mqvy" + —mav?’
5 1V1 2 2V2 2 1V1 2 2V2

Twis shows that the kinetic energy is conserved for e = 1. Hence, elastic collision can also
be defined as the one in which e = 1.

Special cases of elastic collision:

Taking e = 1 for elastic collision, the velocities of the spheres after the collision are given
by
' mq = m 2m 2m mq = m
V1 = # V1 + —2V2 and V2 = —1V - ¥V
mq + Mo m4q+ my mq + My mq + Mo
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(1) For mq >> my, neglecting mz as compared to mq in the above equations, we get
vi’ = vq¢ and v = 2vq = v2

This shows that the larger sphere continues to move with the same velocity, whereas
the velocity of the smaller sphere increases. If the smaller sphere was at rgl.) it moves
with twice the velocity of the larger sphere after the collision.

(2) For m2 >> m4, neglecting mq as compared to m2 in the above equatic)s, wu get

v’ = v2 and wvq

g 2vy = Vq

In this case also, the larger sphere continues to move with {he si me velocity, but the
velocity of the smaller sphere changes.

(i) If the smaller sphere were moving with twice [nes#sged of the larger sphere, it
becomes stationary after the collision.

(ii) If the smaller sphere were moving with velc:ity | 'ss than twice the velocity of the
larger sphere, it continues to move £in ) he “Came direction, but with decreased
speed.

(iii) If the smaller sphere were moving \iith velocity more than twice the velocity of the
larger sphere, it rebounds ard ‘iartc) moving in the opposite direction with the
velocity given as above.

If the larger sphere wis staupnary, it remains stationary. In this case, the smaller
sphere rebounds and. mgve ,with the same speed in the reverse direction.

Summarizing the above fmn, sases, when one of the two spheres colliding is much more
massive than the other,then| he velocity of the larger sphere remains almost the same after
the collision, whereas/ the velc city of the smaller sphere after the collision is almost twice the
velocity of larger sphtr¢ les 5 the velocity of the smaller sphere before the collision.

(3) If my =_m3) then, vi’ = v2 and v2’ = vq. Thus, in elastic collision of two spheres of
equal m( sy, heir velocities get exchanged.

Elastic collision in two dimensions Y N
Suupse)a sphere of mass mq moving in V1

Jadi ection with velocity \7: collides elastically with

& ) stationary (v_; = 0) sphere of mass my as _O . 1 & > X
shown in the figure. After the collision, they move El} . u_z}=l] J ,92 .

in the directions making angles ©; and 0, with the
— - —3
X-axis with velocities v4 and vy respectively.

According to the law of conservation of momentum,

- -, =,

mivq = mqVvq + mavy
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Equating the X- and Y-components of the momenta
mqVq = m1v1'cose1 + mzvz'cosez ...(1) and 0 = m1v1'sin61 - mzvz'sinez ...(2)
As the collision is elastic, kinetic energy is conserved,

1mv2 = 1mv’2 + 1mv’
2 1V1 2 1V1 222

2

. (3)

Using the above three equations, any three unknown quantities can be ¢ term/aed.

5.9 Different forms of enerqy

Besides mechanical energy, some examples of other forms o mynergy. are as under.

Internal Energy:

The sum of vibrational kinetic energy and potentiai\ener )y due to mutual attraction and
repulsion between constituent particles of a suMstcice ™ known as internal energy of the
body. Due to work done against friction, interni efiei 3y and hence temperature of the body
increases.

Heat or thermal enerqgy:

The kinetic energy of the constitue)t paticles of a body due to their random motion is
known as heat or thermal energy.~f ti.) body.

The difference between internal “eri:rg! “and heat is analogous to mechanical energy and work.
When work is done by body, A o /fody B, mechanical energy of body A decreases and that
of body B increases. Sifiina. jmpvhen heat is transferred from body A to body B, internal
energy of body A decrsiges ¢ ad that of body B increases.

Chemical enerqy:

A stable comnoui d has energy less than its constituent elements in free state. This difference
is known as' chedical energy or chemical binding energy. In a chemical reaction, if the
chemical seliprg 1 o the products is less than that of the reactants, heat is evolved and the
reaction iv) canc ! exothermic. Here, chemical energy got converted into heat energy. Similarly,
if the \:harical energy of the products is more than that of the reactants, heat is absorbed

andythe yreaction is called endothermic. Here, heat energy got converted into chemical energy.

Jled ‘rical _energy:

T e energy associated with electric current is known as electrical energy. When electric
current is used in a heater, electrical energy is converted into heat energy. Similarly, in a
lamp, it is converted into heat and light energy.

Nuclear enerqy:

The mass of a nucleus is less than the sum of the masses of its constituent protons and
neutrons in free state. The energy equivalent to this mass difference is known as nuclear
energy or nuclear binding energy. In a nuclear fission reaction, when heavy nuclei like
uranium are bombarded by neutrons, they break up into smaller nuclei releasing huge amount
of nuclear energy. Such reactions are used in nuclear reactors for producing power and in
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atomic weapons. In the Sun and stars, nuclear fusion reaction occurs in which lighter nuclei
like protons, deuterons fuse at high temperature to form a helium nucleus releasing huge
amount of energy. At the microscopic level, all different forms of energy are in the form of
potential and /or kinetic energy.

Equivalence of mass and energy

Albert Einstein gave an equation for inter-conversion of mass and energy as A'nd
E = mc2, where ¢ = 3x10% m/s is the velocity of light in vacuum.

Conservation of enerqy

“The total energy of an isolated system remains constant.” This the! statement of law of
conservation of energy. One form of energy may get converted int ther form or energy.
Energy cannot be created or destroyed. The universe is a ate*system and so the total
energy of the universe remains constant.




