This question paper contains 8 printed pages]

Code No.: 23(I) Roll No.

O(CCEM)9 STATISTICS

Paper: I

Time Allowed: 3 hours]

[Maximum Marks: 300

Note: (i) Answers must be written in English.

- (ii) Number of marks carried by each question are indicated at the end of the question.
- (iii) Part/Parts of the same question must be answered together and should not be interposed between answers to other questions.
- (iv) The answer to each question or part thereof should begin on a fresh page.
- (v) Your answers should be precise and coherent.
- (vi) Attempt five questions in all, choosing at most two questions from each Section. Question No. 1 is compulsory.

P. T. O.

SECTION - I

(Probability)

- **1.** (a) Write down the three basic axioms of probability and show that if the events A and B are such that $A \subset B$ then:
 - (i) $P(A) \le P(B)$, and
 - (ii) P(B-A) = P(B) P(A) 15
 - (b) What are the various methods of estimation?Explain any two of them with examples.
 - (c) State and prove Neyman-Pearson lemma. 15
 - (d) Describe the analysis of two-way classified data and give the ANOVA table.15
- 2. (a) Define conditional probability and show that it Satisfies axioms of probability.
 - (b) Let A and B be the respective events that two contracts I and II are completed by certain deadlines and suppose that P (at least one contract is completed by the deadline) = 0.9 and P (both contracts are completed by their deadlines) = 0.5. Calculate the probability P (exactly one contract is completed by its deadline).
 - (c) Let the events A_1, A_2, \dots, A_n defined on a sample space Ω be such that :

- (i) $Ai \cap Aj = \phi, i \neq j$,
- (ii) $\bigcup_{i=1}^{n} Ai = \Omega$, and
- (iii) P(Ai) > 0 for all i. Then for any event B on Ω , show that :

$$P(B) = \sum_{i=1}^{n} P(B/Ai) \cdot P(Ai)$$
 20

3. (a) Define random variable (r. v.) and its distribution function (d. f.). A continuous r. v. X has probability density function (pdf):

$$f(x) = \frac{2x}{9}, 0 < x < 3$$

= 0, otherwise.

Find:

- (i) d. f. of X
- (ii) $P(X \le 2)$
- (iii) P(-1 < x < 1.5)
- (iv) P(X=2) 20

(3) P. T. O.

(b) Calculate the characteristic function (ch. f.) of a r. v. X with pdf:

$$f(x) = \lambda . e^{-\lambda x}, x \ge 0$$

Hence obtain its mean and variance.

20

- (c) A bowl contains 8 chips. Three of the chips are red and remaining 5 are blue. Two chips are drawn successively at random and without replacement. What is the probability that the first draw results in a red chip and the second draw results in a blue chip?
- 4. (a) Given that the joint pdf of r. vs. X and Y is

$$f(x,y) = \frac{x(1+3y^2)}{4}, \quad 0 < x < 2$$

= 0, otherwise

Find:

- (i) The marginal pdfs of X and Y,
- (ii) The conditional pdf of X given Y = y,

(iii)
$$P\left(\frac{1}{4} < X < \frac{1}{2} | Y = \frac{1}{3}\right)$$
 20

(b) Explain the weak and strong law of large numbers.

(c) Let u(X) be a non-negative function of r. v. X. If E(u(X)) exists then for every constant C, show that:

$$P(u(X) \ge C) \le \frac{E(u(X))}{C}$$

Hence deduce Cheleyshev's inequality. 20

SECTION - II

(Statistical Inference)

- 5. (a) Define consistent estimator of a parameter. Show that in random sampling from a normal population, the sample mean is a consistent estimator of the population mean.
 - (b) Show that x(x-1)/n(n-1) is an unbiased estimator of θ^2 for the $B(n,\theta)$ distribution.
- 6. (a) How is Cramer-Rao inequality useful in obtaining minimum variance unbiased estimator (MVUE) ? Given the pdf:

$$f(x;\theta) = \frac{e^{-\theta} \cdot \theta^x}{x!}, x = 0, 1, 2, \dots; \theta > 0$$

Show that the C-R lower bound is θ/n .

P. T. O.

- (b) Describe sequential probability ratio test (SPRT), operating characteristic (OC) and Average sample number (ASN) functions. Derive an expression for ASN. Also obtain ASN for testing H_0 : $\mu = 10$ against H_1 : $\mu = 20$, where observations follow $N(\mu, 10)$ distribution. (Given $\alpha = 0.04$, $\beta = 0.10$).
- 7. (a) What is meant by confidence interval? How are confidence intervals obtained for large samples? Show that for the distribution:

$$f(x;\theta) = \theta \cdot e^{-\theta x}, x \ge 0$$

the confidence limits for θ in large samples with confidence coefficient $\alpha=0.05$ are given by :

$$\left(1 \pm \frac{1.96}{\sqrt{n}}\right) / \overline{x}$$
 30

- (b) Define sufficient and efficient estimator. Given that X_1 and X_2 are two independent observations from a Poisson distribution with mean 0, show that $X_1 + X_2$ is sufficient for θ and $X_1 + 2X_2$ is not sufficient for θ .
- 8. (a) State and prove generalized Neyman Pearson lemma for randomized test: 30
 - (b) Let 0 be a real parameter and let X have pdf:

$$f(x, \theta) = c(\theta) \cdot \exp \{Q(\theta)T(x)\} h(x),$$

where $Q(\theta)$ is strictly monotone. Prove that for testing $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$, there exists a UMPU test φ such that, if $Q(\theta)$ is increasing then:

$$\varphi(x) = 1 \quad \text{if } T(x) > c$$

$$= \gamma \quad \text{if } T(x) = c$$

$$= 0 \quad \text{if } T(x) < c,$$

where c and γ are obtained by :

$$E_{\theta_0} \varphi(x) = \alpha.$$

30

SECTION - III

(Linear Inference & Multivariate Analysis)

- (a) Define estimable function and show that a parametric function <u>l</u>' <u>β</u> is estimable if and only if <u>l</u> can be expressed as a linear combination of rows of X.
 - (b) Define Hotelling's T^2 –statistic. Show that :

$$\lambda^{2/n} = \frac{1}{1 + \frac{T^2}{n-1}}$$

where symbols have their usual meaning.

30

10. (a) For the general linear model $\underline{y} = X\underline{\beta} + \underline{e}$, where X is of order $n \times p$ (p < n) matrix, show that there exist no unbiased estimator of $\underline{\beta}$ if rank (X) < p.

(7) P. T. O.

- (b) Define multiple correlation coefficient R between x_1 and $(x_2, x_3,, x_p)$ and show that $R^2 \ge R_0^2$, where R_0 is multiple correlation coefficient between x_1 and any linear combination of $x_2, x_3,, x_p$.
- **11.** (a) Suppose $\underline{X} \cap N_p(\underline{\mu}, \Sigma)$ and let \underline{X} be partitioned as $\underline{X}' = (\underline{X}'_1, \underline{X}'_2)$, with $Cov(\underline{X}_1, \underline{X}_2) = \Sigma_{12}$. Prove that the necessary and sufficient condition for \underline{X}_1 and \underline{X}_2 to be independent is that $\Sigma_{12} = 0$.
 - (b) Discuss discriminant analysis with reference to the case of two p-variate normal populations. How will you test the goodness of an assigned discriminant function?
- 12. (a) Discuss the method of fitting an orthogonal polynomials. What are the advantages of using orthogonal polynomials for fitting curvilinear relations?
 - (b) Define Hotelling's T² statistic. Give its applications in testing (i) the significance of mean vector of a multivariate normal distribution;
 (ii) the equality of mean vectors of two multivariate normal populations.

