# Q. 1- Q. 25 carry one mark each.

- **Q.1** If v = 2xy, then the analytic function f(z) = u + iv is
  - (A)  $z^2 + c$

(B)  $z^2 + c$ 

(C)  $z^3 + c$ 

- (D)  $z^{3} + c$
- **Q.2** If cov(X, Y) = 10, var(X) = 6.25 and var(Y) = 31.36, then  $\rho(X, Y)$  is
  - (A) 5/7

(B) 4/5

(C) 3/4

- (D) 0.256
- **Q.3** If **A** is a 3-rowed square matrix such that  $|\mathbf{A}| = 3$ , then  $\mathrm{adj}(\mathrm{adj}\mathbf{A})$  is equal to:
  - (A) 3A

(B) 9A

(C) 27A

- (D) none of these
- A discrete random variable X has possible values  $x_i = i^2$ , i = 1, 2, 3, 4 which occur with probabilities 0.4, 0.25, 0.15, 0.1,. The mean value  $\overline{X} = E[X]$  of X is
  - (A) 6.85

(B) 4.35

(C) 3.96

- (D) 1.42
- Q.5 If the modulation index of an AM wave is changed from 0 to 1, the transmitted power
  - (A) increases by 50%

(B) increases by 75%

(C) increases by 100%

- (D) remains unaffected
- **Q.6** A source has an alphabet  $\{a_1, a_2, a_3, a_4, a_5, a_6\}$  with corresponding probabilities  $\{0.1, 0.2, 0.3, 0.5, 0.15, 0.2\}$ . The entropy of this source is
  - (A) 9.3 bits/symbol

(B) 7.3 bits/symbol

(C) 5.4 bits/symbol

- (D) 2.4 bits/symbol
- **Q.7** The Fourier series coefficient for the periodic signal shown below is



(A) 1

(B)  $\cos(\frac{\pi}{2}k)$ 

(C)  $\sin(\frac{\pi}{2}k)$ 

- (D) 2
- **Q.8** The Fourier transform of signal  $e^{-4t}$  is
  - (A)  $\frac{8}{16+\omega^2}$

(B)  $\frac{-8}{16 + \omega^2}$ 

(C)  $\frac{4}{16 + \omega^2}$ 

(D)  $\frac{-4}{16 + \omega^2}$ 

- **Q.9** The z-transform of a anti causal system is  $X(z) = \frac{12-21z}{3-7z+12z^2}$  The value of x[0] is
  - (A) -7/4

(B) 0

(C) 4

- (D) Does not exist
- **Q.10** Consider the given a circuit and a waveform for the input voltage. The diode in circuit has cutin voltage  $V_{\gamma} = 0$ .





The waveform of output voltage  $v_o$  is









**Q.11** For the circuit shown below the value of  $A_v = \frac{v_o}{v_i}$  is



(A) - 10

(B) 10

(C) - 11

- (D) 11
- **Q.12** Input impedance of an instrumentation amplifier compared with a difference amplifier is
  - (A) High

(B) Low

(C) Same

- (D) Cannot not be determined
- **Q.13** The buried layer in an integrated circuit is
  - (A) doped

- (B) doped
- (C) used to reduce the parasitic capacitance
- (D) located in the base region

**Q.14** A tree of the graph shown below is



(A) b d a

(B) a d f

(C) def

- (D) b c e
- **Q.15** In the following circuit the value of  $i_N$  and  $R_N$  are



 $(A) 4 A, 3 \Omega$ 

(B)  $2 A, 6 \Omega$ 

(C)  $2 A, 9 \Omega$ 

- (D) 4 A, 2  $\Omega$
- **Q.16** The circuit shown below is critically damped. The value of R is



(A)  $40 \Omega$ 

(B)  $60 \Omega$ 

(C) 120 Ω

- (D) 180 Ω
- **Q.17** In a simple RC high pass filter the desired roll-off frequency is 15 Hz and  $C=10~\mu F$  . The value of R would be
  - (A)  $2.12 \text{ k}\Omega$

(B)  $1.06 \text{ k}\Omega$ 

(C)  $6.67 \text{ k}\Omega$ 

- (D) 13.33 k $\Omega$
- **Q.18** If  $X\overline{Y} + \overline{X}Y = Z$  then  $X\overline{Z} + \overline{X}Z$  is equal to
  - (A)  $\overline{Y}$

(B) Y

(C) 0

(D) 1

**Q.19** The diode logic circuit shown below is a



(A) AND

(B) OR

(C) NAND

(D) NOR

**Q.20** The open-loop transfer function with ufb are given below for different systems. The unstable system is

(A)  $\frac{2}{s+2}$ 

(B)  $\frac{2}{s^2(s+2)}$ 

(C)  $\frac{2}{s(s-2)}$ 

(D)  $\frac{2(s+1)}{s(s+2)}$ 

**Q.21** In the signal flow graph shown below the transfer function is



(A) 3.75

(B) -3

(C) 3

(D) -3.75

**Q.22** If  $\mathbf{r} = x\mathbf{u}_x + y\mathbf{u}_y + z\mathbf{u}_z$  then  $(r \cdot \nabla) r^2$  is equal to

(A)  $2r^2$ 

(B)  $3r^2$ 

(C)  $4r^2$ 

(D) 0

**Q.23** A field **E** is given by  $\mathbf{E} = 3y^2z^3\mathbf{u}_x + 6xyz^3\mathbf{u}_y + 9xy^2z^2\mathbf{u}_z$ . The potential function V is

(A)  $3xy^2z^3$ 

(B)  $-3xy^2z^3$ 

(C)  $9x^2y^2z^2$ 

(D)  $-9x^2y^2z^2$ 

**Q.24** If magnetization is given by  $\mathbf{H} = \frac{6}{a}(-y\mathbf{u}_x + x\mathbf{u}_y)$  in a cube of size a, the magnetization volume current density is

(A)  $\frac{12}{a}\mathbf{u}_z$ 

(B)  $\frac{6}{a}(x-y)$ 

(C)  $\frac{6}{a}\mathbf{u}_z$ 

(D)  $\frac{3}{a}(x-y)$ 

**Q.25** If Rolle's theorem holds for  $f(x) = x^3 - 6x^2 + kx + 5$  on [1,3] with  $c = 2 + \frac{1}{\sqrt{3}}$ , then value of k is

(A) - 3

(B) 3

(C)7

(D) 11

# Q. 26- Q. 55 carry two mark each.

**Q.26** A silicon crystal having a cross-sectional area of 0.001 cm  $^3$  and a length of 20  $\mu$ m is connected to its ends to a 20 V battery. At T=300 K, we want a current of 100 mA in crystal. The concentration of donor atoms to be added is

(A)  $2.4 \times 10^{13}$  cm<sup>-3</sup>

(B)  $4.6 \times 10^{13}$  cm<sup>-3</sup>

(C)  $7.8 \times 10^{14}$  cm<sup>3</sup>

(D)  $8.4 \times 10^{14}$  cm<sup>3</sup>

**Q.27** A gallium arsenide pn junction is operating in reverse-bias voltage  $V_R = 5$  V. The doping profile are  $N_a = N_d = 10^{16} \, \mathrm{cm}^{-3}$ . The minority carrier life time are  $\tau_{p0} = \tau_{n0} = \tau_0 = 10^{-8} \, \mathrm{s}$ . The reverse-biased generation current density is

(A)  $1.9 \times 10^{-8} \,\mathrm{A/cm^2}$ 

(B)  $1.9 \times 10^{-9} \,\mathrm{A/cm^2}$ 

(C)  $1.4 \times 10^{-8} \,\mathrm{A/cm^2}$ 

(D)  $1.4 \times 10^{-9} \,\mathrm{A/cm^2}$ 

**Q.28** The cross section of a JFET is shown in the following fig. Let  $V_c$  be -2 V and let  $V_P$  be the initial pinch off voltage. If the width W is doubled (with other geometrical parameters and doping levels remaining the same), then the ratio between the mutual trans conductance of the initial and the modified JFET is



(A) 4

(B)  $\frac{1}{2} \left( \frac{1 - \sqrt{2/V_p}}{1 - \sqrt{1/2V_p}} \right)$ 

(C)  $\left(\frac{1-\sqrt{2/V_p}}{1-\sqrt{1/2V_p}}\right)$ 

(D)  $\frac{1 - 2(2/\sqrt{V_p})}{1 - (1(2\sqrt{V_p}))}$ 

**Q.29** In the network shown below f can be written as



- (A)  $X_0 X_1 X_3 X_5 + X_2 X_4 X_5 ... X_{n-1} + ... X_{n-1} X_n$
- (B)  $X_0 X_1 X_3 X_5 + X_2 X_3 X_4 ... X_n + ... X_{n-1} X_n$
- (C)  $X_0 X_1 X_3 X_5 ... X_n + X_2 X_3 X_5 + ... X_n + ... + X_{n-1} X_n$

(D) 
$$X_0 X_1 X_3 X_5 ... X_{n-1} + X_2 X_3 X_5 ... X_n + ... + X_{n-1} X_{n-2} + X_n$$

**Q.30** The digital block shown below realized using two positive edge triggered D-flip-flop. Assume that for  $t < t_0, Q_1 = Q_2 = 0$ 



The circuit in the digital block is given by









**Q.31** A 555 IC is connected as shown below. The range of oscillation frequency is



- (A) 607 kHz < f < 1.41 kHz
- (C) 627 Hz  $\leq f \leq$  4.81 kHz

- (B)  $208 \text{ kHz} \le f \le 496 \text{ kHz}$
- (D) 5 kHz  $\leq f \leq$  9.4 kHz

Q.32 If the input  $X_3X_2X_1X_0$  to the ROM shown below are 8-4-2-1 BCD numbers, then output  $Y_3 Y_2 Y_1 Y_0$  are



(A) 2 - 4 - 2 - 1 BCD number

(B) gray code number

(C) excess 3 code converter

- (D) none of the above
- Q.33 Consider the following assembly language program:

The execution of the above program in an 8085 will result in

- (A) an output of 87H at PORT1
- (B) an output of 87H at PORT2
- (C) infinite looping of the program execution with accumulator data remaining at H00
- (D) infinite looping of the program execution with accumulator data alternating between 00H and 87H.
- Q.34 Consider the following system

a. 
$$T(s) = \frac{5}{(s+3)(s+6)}$$
  
c.  $T(s) = \frac{20}{s^2 + 6s + 44}$   
e.  $T(s) = \frac{(s+5)}{(s+10)^2}$ 

c. 
$$T(s) = \frac{20}{s^2 + 6s + 44}$$

e. 
$$T(s) = \frac{(s+5)}{(s+10)^2}$$

b. 
$$T(s) = \frac{10(s+7)}{(s+10)(s+20)}$$
  
d.  $T(s) = \frac{s+2}{s^2+9}$ 

d. 
$$T(s) = \frac{s+2}{s^2+9}$$

Consider the following response

1. Over damped

Q.35

3. Under damped

The correct match is

- 1 2 3 4
- (A) d
- (B) b d e
- (C) c d
- (D) c b d e
- An ufb system is given as  $G(s) = \frac{K(1-s)}{s(s+3)}$  Indicate the correct root locus diagram.





2. Under damped

4. Critically damped





- For  $dy/dx = x + y^2$ , given that y = 1 at x = 0. Using Runge Kutta fourth order Q.36 method the value of y at x = 0.2 is (h = 0.2)
  - (A) 1.2735

(B) 2.1635

(C) 1.9356

- (D) 2.9468
- The general solution of  $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = 10\cos x$  is Q.37
  - (A)  $y = c_1 e^{-x} + c_2 e^{2x} 3\cos x \sin x$  (B)  $y = c_1 e^{x} + c_2 e^{2x} 3\cos x$  (C)  $y = c_1 e^{-x} + c_2 e^{2x} 3x + \sin x$  (D)  $y = c_1 e^{x} + c_2 e^{2x} 3\cos x$
  - (C)  $y = c_1 e^{-x} + c_2 e^{2x} 3x + \sin x$
- (D)  $y = c_1 e^x + c_2 e^{-2x} 3\cos x \sin x$
- $\int_0^{\frac{\pi}{2}} \frac{e^x}{2} \Bigl(\sec^2 \frac{x}{2} + 2 \tan \frac{x}{2}\Bigr) dx$  is equal to
  - (A)  $e^{\pi}$

(B)  $e^{\frac{\pi}{2}}$ 

(C) e

- (D)  $e^{\frac{\pi}{4}}$
- A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are Q.39 they likely to contradict each other narrating the same incident?
  - (A) 5%

(B) 45%

(C) 35%

(D) 15%

Q.40 All transistor in the N output mirror shown below are matched with a finite gain  $\beta$ and early voltage  $V_A = \infty$ . The expression for each load current is



(A)  $\frac{I_{ref}}{\left(1 + \frac{(1+N)}{\beta(\beta+1)}\right)}$ 

(B)  $\frac{I_{ref}}{\left(1 + \frac{N}{(\beta + 1)}\right)}$ (D)  $\frac{\beta I_{ref}}{\left(1 + \frac{N}{\beta + 1}\right)}$ 

(C)  $\frac{\beta I_{ref}}{\left(1 + \frac{(1+N)}{(\beta+1)}\right)}$ 

- Consider the common-source circuit shown below The transistor parameters are Q.41  $V_{TN} = 0.8 \text{ V}, K_n = 1 \text{ mA/V}^2 \text{ and } \lambda = 0.$  The small-signal voltage gain is



(A) - 10.83

(B) - 8.96

(C) - 5.76

- (D) -3.28
- In the following circuit, transistors  $Q_1$  and  $Q_2$  has following parameters Q.42

$$\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = 20,$$

$$(V_{TH})_1 = (V_{TH})_2 = 1 \text{ V},$$

$$(K_n')_1 = (K_n')_2 = 100 \,\mu\text{A/V}^2$$



The voltage  $V_1$ ,  $V_2$  and  $V_3$  respectively are

(A) 
$$1 \text{ V}, 1 \text{ V}, -1.1 \text{ V} \text{ V}$$

(B) 
$$1 \text{ V}, 2 \text{ V}, 1 \text{ V}$$

(D) 1 V, 1 V, 
$$-1.32$$
 V

**Q.43** The parameters of the transistor in the circuit shown below are  $\beta = 100$  and  $V_A = 100$  V.



The small-signal voltage gain  $A_v = v_o/v_s$  is

$$(B) - 80$$

(D) 
$$-40$$

**Q.44** Two random variable X and Y have the density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{xy}{9}, & 0 < x < 2 \text{ and } 0 < y < 3 \\ 0 & \text{elsewhere} \end{cases}$$

The X and Y are

- (A) Correlated but statistically independent
- (B) Uncorrelated but statistically independent
- (C) Correlated but statistically dependent
- (D) Uncorrelated but statistically dependent
- **Q.45** In the following circuit the 30 V source has been applied for a long time. The switch is opened at t=1 ms.



At t = 4 ms the  $v_C(4 \text{ ms})$  is

(A) 8.39 mV

(B) 2.59 V

(C) 1.13 mV

- (D) 2.77 V
- **Q.46** The 300  $\Omega$  lossless line shown in fig. is matched to the left of the stub. The value of  $Z_L$  is



(A) 1 - j1.37

(B) 1 + j1.37

(C) 300 + j413

- (D) 300 j413
- **Q.47** The collector current of bipolar is  $I_C = 2 \text{ mA}$ . If output resistance is greater than  $10 \text{ k}\Omega$ . Then what is the value of early voltage  $V_A$ 
  - (A)  $V_A < 20 \text{ V}$

(B)  $V_A < 10 \text{ V}$ 

(C)  $V_A > 10 \text{ V}$ 

(D)  $V_A > 20 \text{ V}$ 

# Common data for Question 48-49:

In the following circuit shown below, the 80 V source has been applied for a long time. The switch is opened at  $t=90~\mathrm{ms}$ 



- **Q.48** At  $t = 0^+$  the current  $i_1(0^+)$  is
  - (A) 0.25 A

(B) 0.17 A

(C) 0.05 A

(D) 0.2 A

- **Q.49** At t = 80 ms the current  $i_1(80 \text{ ms})$  is
  - (A) 20.3 mA

(B) 8.25 mA

(C) 1.84 mA

(D) 6.98 mA

### Common data for Q. 50-51

A random noise X(t) having a power spectrum  $\rho_{XX}(\omega) = \frac{3}{49 + \omega^2}$  is applied to a differentiator that has a transfer function  $H(\omega) = j\omega$ .

The output is applied to a network for which  $h(t) = u(t) t^2 e^{-7t}$ 

- **Q.50** The average power in X(t) is
  - (A) 5/21

(B) 5/24

(C) 5/42

(D) 3/14

- **Q.51** The power spectrum of Y(t) is
  - (A)  $\frac{4\omega^2}{(49+\omega^2)^3}$

(B)  $\frac{12\omega^2}{(49+\omega^2)^4}$ 

(C)  $\frac{42\omega^3}{(49+\omega^2)^2}$ 

(D) None of the above

### Statement for Linked Answer Q. 52-53:

Consider a linear system whose state space representation is  $\dot{x}(t) = Ax(t)$ . If the initial state vector of the system is  $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , then the system response is  $x(t) = \begin{bmatrix} e^{-2x} \\ -2e^{-2t} \end{bmatrix}$ . If the initial state vector of the system changes to  $x(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , then the system response becomes  $x(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$ 

- **Q.52** The eigenvalue and eigenvector pairs  $(\lambda_i, v_i)$  for the system are
  - $\text{(A)} \left(-1, \begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) \text{and} \left(-2, \begin{bmatrix} 1 \\ -2 \end{bmatrix}\right)$

(B)  $\left(-1, \begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)$  and  $\left(2, \begin{bmatrix} 1 \\ -2 \end{bmatrix}\right)$ 

(C)  $\left(-1,\begin{bmatrix}1\\-1\end{bmatrix}\right)$  and  $\left(-2,\begin{bmatrix}1\\-2\end{bmatrix}\right)$ 

(D)  $\left(-2,\begin{bmatrix}1\\-1\end{bmatrix}\right)$  and  $\left(1,\begin{bmatrix}1\\-2\end{bmatrix}\right)$ 

- **Q.53** The system matrix A is
  - $(A) \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$

 $(B)\begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ 

 $(C)\begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ 

 $(D) \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ 

#### Statement for Linked Answer Q. 54-55:

A signal  $x(t) = \sin c(4000t)$  is ideally sampled with a sampling interval  $T_s = 0.25$  ms

**Q.54** Which of the following is spectrum of the sampled signal s(f)









**Q.55** In the above question if sampling interval  $T_s = 0.4$  ms. then output spectrum will be





