- (1) Area of the greatest rectangle that can be inscribed in an ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  is
  - (a) 2ba
- (b) ab (c)  $\sqrt{ab}$  (d)  $\frac{a}{b}$

[AIEEE 2005]

- (2) Let P be the point (1,0) and Q the point on the locus y he locus of midpoint of PQ is
  - (a)  $y^2 4x + 2 = 0$  (b)  $y^2 + 4x + 2 = 0$  (c)  $x^2 + 4y + 2 = 0$  (d)  $x^2 4y + 2 = 0$

[ AIEEE 2005 ]

- (3) The line parallel to the X-axis and passing through the intersection of ax + 2by + 3b = 0 and bx 2ay 3a = 0, where  $(0, b) \neq (0, 0)$  is intersection of the lines
  - (a) below the X-axis at a distance  $\frac{3}{2}$  from it
    - (b) below the X-axis at distance  $\frac{1}{3}$  from it
  - (c) above the X-axis at a distance 3 from it
    - (d) above the x-all at a distance  $\frac{2}{3}$  from it

[ AIEEE 2005 ]

- (4) The locus of a point  $P(\alpha, \beta)$  moving under the condition that the line  $y = \alpha x + \beta$  is a tangent to the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  is

- (b) a circle (c) a parabola (d) a hyperbola [AIEEE 2005]

- on-zero numbers a, b, c are in H.P., then the straight line  $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point. That point is

- (a) (-1, 2) (b) (-1, -2) (c) (1, -2) (d)  $(1, -\frac{1}{2})$  [AIEEE 2005]

- (6) If a vertex of a triangle is (1, 1) and the midpoint of two sides through this vertex are (-1, 2) and (3, -2), then the centroid of the triangle is

  - (a)  $(-1, \frac{7}{3})$  (b)  $(-\frac{1}{3}, \frac{7}{3})$  (c)  $(1, \frac{7}{3})$  (d)  $(\frac{1}{3}, \frac{7}{3})$  [AIEEE 2005]



- (b) no value of a
- (a) exactly one value of a(b) no value of a(c) infinitely many values of a(d) exactly two values of a

2005 1

- (8) A circle touches the X-axis and also touches the circle with 0, 3) and radius 2. The locus of the centre of the circle is
- (a) an ellipse (b) a circle (c) a hyperbola (d) a parabola

[ AIEEE 2005 ]

- (9) If a circle passes through the point (a, b) and cuts the circle  $x^2 + y^2 = p^2$ orthogonally, then the equation of the locus
  - (a)  $x^2 + y^2 3ax 4by + (a^2 + b^2)$ (b)  $2ax + 2by (a^2 b^2 + p^2) =$ (c)  $x^2 + y^2 2ax 3by(a^2 b^2)$

  - (d)  $2ax + 2by (a^2 + b^2)$

[AIEEE 2005]

- (10) An ellipse has OB as semi mi or axis, F and F' its foci and the angle FBF' is a right angle. Then the econst city or the ellipse is

- (c)  $\frac{1}{4}$  (d)  $\frac{1}{\sqrt{3}}$

[ AIEEE 2005 ]

- of lines  $ax^2 + 2(a + b)xy + by^2 = 0$  lie along diameters of a circle and the circle into four sectors such that the area of one of the sectors is thrice a of another sector, then
- $3a^{2} 10ab + 3b^{2} = 0$  (b)  $3a^{2} 2ab + 3b^{2} = 0$   $3a^{2} + 10ab + 3b^{2} = 0$  (d)  $3a^{2} + 2ab + 3b^{2} = 0$

[ AIEEE 2005 ]

- (12) Let A(2, -3) and B(-2, 1) be the vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line.

  - (a) 2x + 3y = 9 (b) 2x 3y = 7
  - (c) 3x + 2y = 5 (d) 3x 2y = 3

[AIEEE 2004]

(13) The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes whose sum is - 1 is

(a) 
$$\frac{x}{2} + \frac{y}{3} = -1$$
 and  $\frac{x}{-2} + \frac{y}{1} = -1$ 

(b) 
$$\frac{x}{2} - \frac{y}{3} = -1$$
 and  $\frac{x}{-2} + \frac{y}{1} = -1$ 

(c) 
$$\frac{x}{2} + \frac{y}{3} = 1$$
 and  $\frac{x}{-2} + \frac{y}{1} = 1$ 

(d) 
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and  $\frac{x}{-2} + \frac{y}{1} = 1$ 



- $7y^2 = 0$  is four times their (14) If the sum of the slopes of the lines given by product, the c has the value

  - (a) 1 (b) -1 (c) 2

- [AIEEE 2004]
- $y + 4cy^2 = 0$  is 3x + 4y = 0, then c equals (15) If one of the lines given by 6x -
  - (a) 1 (b) -1

- [AIEEE 2004]
- (16) If a circle passe arough the point (a, b) and cuts the circle  $x^2 + y^2 = 4$  orthogonally, then neglectus of its centre is

(a) 
$$2ax + 2by + (a^2 + b^2 + 4) = 0$$
 (b)  $2ax + 2by - (a^2 + b^2 + 4) = 0$   
(c)  $2ax + 2by + (a^2 + b^2 + 4) = 0$  (d)  $2ax - 2by - (a^2 + b^2 + 4) = 0$   
[AIEEE 2004]

(c) 
$$2a + by + (a^2 + b^2 + 4) = 0$$
 (d)  $2ax - 2by - (a^2 + b^2 + 4) = 0$ 

- Variable circle passes through the fixed point A(p,q) and touches the X-axis. The locus of the other end of the diameter through A is

  - (a)  $(x p)^2 = 4qy$  (b)  $(x q)^2 = 4py$ (c)  $(y p)^2 = 4qx$  (d)  $(y q)^2 = 4px$

- [AIEEE 2004]
- (18) If the lines 2x + 3y + 1 = 0 and 3x y 4 = 0 lie along diameters of a circle of circumference 10  $\pi$ , then the equation of the circle is

(a) 
$$x^2 + y^2 - 2x + 2y - 23 = 0$$
 (b)  $x^2 + y^2 - 2x - 2y - 23 = 0$   
(c)  $x^2 + y^2 + 2x + 2y - 23 = 0$  (d)  $x^2 + y^2 + 2x - 2y - 23 = 0$  [AIEEE 2004]

(c) 
$$x^2 + y^2 + 2x + 2y - 23 = 0$$
 (d)  $x^2 + y^2 + 2x - 2y - 23 = 0$ 

| (19) | The intercept on | n the line y = x | by the | circle | x <sup>2</sup> + | $y^2$ - | 2x = | 0 is | AB. | Equation | of the |
|------|------------------|------------------|--------|--------|------------------|---------|------|------|-----|----------|--------|
|      | circle on AB as  | s a diameter is  |        |        |                  |         |      |      |     |          |        |

(a) 
$$x^2 + y^2 - x - y = 0$$
  
(b)  $x^2 + y^2 - x + y = 0$   
(c)  $x^2 + y^2 + x + y = 0$   
(d)  $x^2 + y^2 + x - y = 0$ 

(b) 
$$x^2 + y^2 - x + y = 0$$

(c) 
$$x^2 + y^2 + x + y = 0$$

(d) 
$$x^2 + y^2 + x - y = 0$$

2004 1

(20) If 
$$a \neq 0$$
 and the line  $2bx + 3cy + 4d = 0$  passes through the points of intersection of the parabolas  $y^2 = 4ax$  and  $x^2 = 4ay$ , then

(a) 
$$d^2 + (2b + 3c)^2 = 0$$
 (b)  $d^2 + (3b + 2c)^2 = 0$  (c)  $d^2 + (2b - 3c)^2 = 0$  (d)  $d^2 + (3b - 2c)^2 = 0$ 

(b) 
$$d^2 + (3b + 2c)^2 = 0$$

$$(c) d^2 + (2b - 3c)^2 =$$

$$(d) d^2 + (3b - 2c)^2 =$$

[AIEEE 2004]

e or gin, is  $\frac{1}{2}$ . If one of the (21) The eccentricity of an ellipse, with its centre-at directices is x = 4, then the equation of the element is

(a) 
$$3x^2 + 4y^2 = 1$$
 (b)  $3x^2 + 4y^2 = 1$  (c)  $4x^2 + 3y^2 = 12$  (d)  $4x^2 + 4y^2 = 12$ 

(b) 
$$3x^2 + 4x^2 = 12$$

(c) 
$$4x^2 + 3y^2 = 12$$

$$(d) 4x^2 + 3y =$$

[AIEEE 2004]

(22) Locus of centroid of the rights whose vertices are (a cost, a sint), (b sint, -b cost and (1, 0) where the parameter is

$$(a) (3x - 1)^2$$
  $(x)^2 = a^2 - b^2$   
 $(c) (3x + 1)^2$   $(3)^2 = a^2 + b^2$ 

(b) 
$$(3x + 1)^2 + (3y)^2 = a^2 - b^2$$

$$(c) (3x + 1)^2 (3)^2 = a^2 + b^2$$

$$a = a^2 - b^2$$
 (b)  $(3x + 1)^2 + (3y)^2 = a^2 - b^2$   
=  $a^2 + b^2$  (d)  $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ 

(23) If the equation of the locus of a point equidistant from the points 
$$(a_1, b_1)$$
 and  $(a_2, b_3)$  is

(a) 
$$\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$$

(b) 
$$a_1^2 - a_2^2 + b_1^2 - b_2^2$$

$$(c) \frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$$

$$\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2} \qquad (b) \quad a_1^2 - a_2^2 + b_1^2 - b_2^2$$

$$\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2) \quad (d) \quad \frac{1}{2}(a_1^2 + b_2^2 - a_1^2 - b_1^2) \qquad [AIEEE 2003]$$

(24) If the pair of straight lines 
$$x^2$$
 - 2pxy -  $y^2$  = 0 and  $x^2$  - 2qxy -  $y^2$  = 0 be such that each pair bisects the angle between the other pair, then

$$(a) n - a$$

$$(h) n - - a$$

$$(c)$$
  $pa = c$ 

(a) p = q (b) p = -q (c) pq = 1 (d) pq = -1 [AIEEE 2003]

| (25) | lf | the | sy | stem | of I | inear | equ | ations | X   | +   | 2ay   | + | az  | = | 0, | X  | + | 3by | + | bz | = 0 | ) a | and |
|------|----|-----|----|------|------|-------|-----|--------|-----|-----|-------|---|-----|---|----|----|---|-----|---|----|-----|-----|-----|
|      | X  | + 4 | су | + CZ | = 0  | has   | a n | on-zer | o s | olu | ution | , | the | n | a, | b, | С |     |   |    |     |     |     |

- (a) are in A.P.
- (b) are in G. P.
- (c) are in H.P.
- (d) satisfy a + 2b + 3c = 0

2003 ]

(26) The area of the region bounded by the curves 
$$y = Ix - II$$
 and  $y = 3 + IxI$  is

- (a) 2 sq. units (b) 3 sq. units (c) 4 sq. units
- (d) (sq. units

[AIEEE 2003]

(27) The equation of the straight line joining the origin to the point of intersection of 
$$y - x + 7 = 0$$
 and  $y + 2x - 2 = 0$  is

- (a) 3x + 4y = 0 (b) 3x 4y = 0 (c) 4x 3y = 0 (d) 4x + 3y = 0

[AIEEE 2003]

(28) If the two circles 
$$(x - 1)^2 + (x - 3)^2 + x^2$$
 and  $x^2 + y^2 - 8x + 2y + 8 = 0$  intersect in two distinct points, then

- (a) r < 2

- (d) 2 < r < 8

[ AIEEE 2003 ]

- The lines 2x y > 5 and 3x 4y = 7 are diameters of a circle having radius 7 units. The equation of the circle is (29) The lines 2x -
- -2x + 2y = 62 (b)  $x^2 + y^2 + 2x 2y = 62$  -2x + 2y = 47 (d)  $x^2 + y^2 + 2x 2y = 47$

[ AIEEE 2003 ]

- hal at the point (bt<sub>1</sub><sup>2</sup>, 2bt<sub>1</sub>) on a parabola meets the parabola again at the t (bt22, 2bt2), then
  - (a)  $t_2 = -t_1 \frac{2}{t_1}$  (b)  $t_2 = -t_1 + \frac{2}{t_1}$
  - (c)  $t_2 = t_1 \frac{2}{t_1}$  (d)  $t_2 = t_1 + \frac{2}{t_4}$

[AIEEE 2003]

- (31) If  $x_1$ ,  $x_2$ ,  $x_3$  and  $y_1$ ,  $y_2$ ,  $y_3$  are both in G.P. with the same common ratio, then the points  $(x_1, y_1)$ ,  $(x_2, y_2)$  and  $(x_3, y_3)$  lie on
- (a) a circle (b) an ellipse (c) a straight line (d) a hyperbola [AIEEE 2003]

(32) If the tangent on he point (2 sec  $\phi$ , 3 tan  $\phi$ ) of the hyperbola  $\frac{x^2}{4} - \frac{y^2}{9} = 1$  is parallel to 3x - y + 6 = 0, then the value of  $\phi$  is

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 75°

2003]

(33) The equation of the normal to the hyperbola  $\frac{x^2}{16} - \frac{y^2}{9} = 1$  at (4, 0)

- (a) x = 0 (b) x = 1 (c) y = 0 (d) 2x 3y + 1

[ AIEEE 2003 ]

(34) The square of length of tangent from (3, -4) or

- (a) 20
- (b) 30
- (c) 40
- (d) 50

[ AIEEE 2002 ]

(35) The equation of straight line passi through the intersection of the lines x - 2y = 1x + 4y = 0 is and x + 3y = 2 and parallel to

[AIEEE 2002]

and D of a triangle with vertices A(0, b), B(0, 0) and C(a, 0) death other if (36) The medians BE are perpendicu ar

- (b)  $b = \frac{a}{2}$  (c) ab = 1 (d)  $a = \pm \sqrt{2b}$  [AIEEE 2002]

uation of the curve through the point (1, 0), whose slope is  $\frac{y-1}{x^2+x}$ , is

- (y-1)(x+1) + 2x = 0 (b) 2x(y-1) + x + 1 = 0 x(y-1)(x+1) + 2 = 0 (d) x(y+1) + y(x+1) = 0 [AIEEE 2002]

(38) The angle between the lines  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$  is

- (a)  $\tan^{-1}\left[\frac{a_1b_1 a_2b_2}{a_1a_2 + b_1b_2}\right]$  (b)  $\tan^{-1}\left[\frac{a_1b_2 + a_2b_1}{a_1a_2 b_1b_2}\right]$ (c)  $\cot^{-1}\left[\frac{a_1b_1 a_2b_2}{a_1a_2 + b_1b_2}\right]$  (d)  $\cot^{-1}\left[\frac{a_1a_2 + b_1b_2}{a_1b_2 a_2b_1}\right]$

[AIEEE 2002]



(a) 
$$x + 4y + 1 = 0$$

(b) 
$$9x + 4y + 4 = 0$$

$$(c) x - 4y + 36 = 0$$

(c) 
$$x - 4y + 36 = 0$$
 (d)  $9x - 4y + 4 = 0$ 

2002 1

(40) A square of side a lies above the X-axis and has one vertex at e or in. The side passing through the origin makes an angle  $\alpha$  (0 <  $\alpha$  <  $\pi$  /4 with positive direction of X-axis. The equation of its diagonal not passing rough the origin is

(a) 
$$y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$$

(b) 
$$y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = a$$

(c) 
$$y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) =$$

(d) 
$$y(\cos \alpha + \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$$

[ AIEEE 2002 ]

(41) The distance between the pair of paraller lines  $x^2 - 24xy + 16y^2 - 12x + 16y - 12 = 0$ 

- (a) 5
- (b) 8
- (c)  $\frac{8}{5}$

[AIEEE 2002]

(42) The equation of a circle passing through (1, 0) and (0, 1) and having the smallest possible radius, is

(a) 
$$x^2 + y^2 - x - y =$$

(b) 
$$x^2 + y^2 + x + y = 0$$

(c) 
$$2x^2 + y^2$$

$$2x - y = 0$$

(b) 
$$x^2 + y^2 + x + y = 0$$
  
(d)  $x^2 + 2y^2 - x - 2y = 0$ 

[ AIEEE 2002 ]

e between the foci of an ellipse is equal to its minor axis, then eccentricity (43) If dist

- (b)  $\frac{1}{\sqrt{3}}$  (c)  $\frac{1}{\sqrt{4}}$  (d)  $\frac{1}{\sqrt{6}}$

[ AIEEE 2002 ]

The equation of an ellipse, whose major axis = 8 and eccentricity =  $\frac{1}{2}$ , is

- (a)  $3x^2 + 4y^2 = 12$  (b)  $3x^2 + 4y^2 = 48$  (c)  $4x^2 + 3y^2 = 48$  (d)  $3x^2 + 9y^2 = 12$

[ AIEEE 2002 ]

(45) For the hyperbola  $3x^2 - y^2 = 4$ , the eccentricity is

- (a) 1 (b) 2 (c) -2 (d) 5

[ AIEEE 2002 ]

| (46) | The eccentricity | of the | hyperbola | $\frac{\sqrt{1999}}{3}$ | ( x <sup>2</sup> | - y <sup>2</sup> ) | = 1 | is |
|------|------------------|--------|-----------|-------------------------|------------------|--------------------|-----|----|
|------|------------------|--------|-----------|-------------------------|------------------|--------------------|-----|----|

- (a)  $\sqrt{3}$  (b)  $\sqrt{2}$  (c) 2 (d)  $2\sqrt{2}$

**SEE 2002** 1

(47) The minimum area of the triangle formed by any tangent to the with the co-ordinate axes is

- (a) ab (b)  $\frac{a^2 + b^2}{2}$  (c)  $\frac{a^2 + b^2}{4}$  (d)  $\frac{a^2 + b^2}{3}$

[IIT 2005]

(48) The tangent drawn to the parabola  $y = x^2 + 6$  at the point (1, 7) touches the circle  $x^2 + y^2 + 16x + 12y + c = 0$  at the point whose c ordinates are

- (a) (-6, -7) (b) (-10, -15)
- (d)(13,7)

[ IIT 2005 ]

(49) If  $x = |a + b\omega + c\omega^2|$ , where a, c are variable integers and  $\omega$  is the cube root of unity other than 1, then the maximum value of x = 0

- (b) 1

[IIT 2005]

(50) Locus of the circle couching X-axis and the circle  $x^2 + (y - 1)^2 = 1$  externally is

[IIT 2005]

Angle between the tangents drawn from (1, 4) to the parabola  $y^2 = 4x$  is

- (a)  $\frac{\pi}{2}$  (b)  $\frac{\pi}{3}$  (c)  $\frac{\pi}{6}$  (d)  $\frac{\pi}{4}$

[IIT 2004]

(52) Area of the triangle formed by the line x + y = 3 and the angle bisector of the pair of lines  $x^2 - y^2 + 2y = 1$  is

- (a) 1
- (b) 3 (c) 2 (d) 4

[IIT 2004]

- (53) Diameter of the given circle  $x^2 + y^2 2x 6y + 6 = 0$  is the chord of another circle C having centre (2, 1). The radius of the circle C is
  - (a)  $\sqrt{3}$
- (b) 2 (c) 3 (d) 1

- (54) If the system of equations 2x y z = 2, x 2y + z = 4has no solution, then  $\lambda$  is equal to
  - (a) -2 (b) 3 (c) 0 (d) -3

- [IIT 2004]
- (55) The point at which the line  $2x + \sqrt{6}y = 2$  touches to curve  $x^2 2y^2 = 4$  is
  - (a)  $(4, -\sqrt{6})$  (b)  $(\sqrt{6}, 1)$  (c)

- ta gents to ellipse  $x^2 + 2y^2 = 2$  intercepted (56) Locus of mid-points of segment between the axes is
  - (a)  $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$

- [IIT 2004]
- whose vertices are (0, 0), (3, 4) and (4, 0) is (57) Orthocentre of t

- (b)  $\left(3, \frac{5}{4}\right)$  (c) (5, -2) (d)  $\left(3, \left(3, \frac{3}{4}\right)\right)$  [IIT 2003]
- hich one of the following is independent of  $\alpha$  in the hyperbola  $(0 < \alpha < \frac{\pi}{2})$ 

  - (a) eccentricity (b) abscissa of foci (c) directrix (d) vertex [IIT 2003]

- (59) The focal chord of  $y^2 = 16x$  is a tangent to the curve  $(x 6)^2 + y^2 = 2$ , then the possible values of the slope of this chord are
- (a) (1, -1) (b) (-1/2, 2) (c) (-2, 1/2) (d) (1/2, 2) [IIT 2003]

| (60) | A triangle is formed | by the co-ordinate   | s, (0, 0), | (0, 21) and (     | 21, 0). Find  | the |
|------|----------------------|----------------------|------------|-------------------|---------------|-----|
|      | numbers of integral  | co-ordinate strictly | inside the | triangle (integra | l co-ordinate | has |
|      | both x and y).       |                      |            |                   | _             |     |

- (a) 190
- (b) 105
- (c) 231
- (d) 205

2003]

(61) A square is formed by two pairs of straight lines given by 
$$y^2 + 45 = 0$$
 and  $x^2 - 8x + 12 = 0$ . The centre of the circle inscribed in it is

- (a) (7, 4) (b) (4, 7) (c) (3, 7)
- (d) (d)

[IIT 2003]

- (62) The tangents are drawn to the ellipse  $\frac{x^2}{6}$ at the ends of a latus rectum. The area of the quadrilateral so formed is

  - (a) 27 (b)  $\frac{27}{2}$
- (c)  $\frac{27}{4}$

[IIT 2003]

- (63) A tangent is drawn at the point  $(3\sqrt{3}\cos\theta, \sin\theta)$  0 <  $\theta < \frac{\pi}{2}$  to the ellipse  $\frac{x^2}{27} + \frac{y^2}{1} = 1$ . The last value of the sum of the intercepts made by the tangent on is attained at

- $(c) \frac{\pi}{8} \qquad (d) \frac{\pi}{4}$

[IIT 2003]

- (N), 0), Q = (0, 0) and R = (3,  $3\sqrt{3}$ ) are three points, then the equation of sector of the angle PQR is
- $\frac{\sqrt{3}}{2}x + y = 0$  (b)  $x + \sqrt{3}y = 0$ 

  - (c)  $\sqrt{3}x + y = 0$  (d)  $x + \frac{\sqrt{3}}{2}y = 0$

[ IIT 2002 ]

- (65) If the tangent at the point P on the circle  $x^2 + y^2 + 6x + 6y = 2$  meets the straight line 5x - 2y + 6 = 0 at a point Q on the Y-axis, then the length of PQ is

  - (a) 4 (b)  $2\sqrt{5}$  (c) 5 (d)  $3\sqrt{5}$

[IIT 2002]

| (66) | Α  | straight | line | through   | the | origin | 0    | meets     | the   | paralle | l lines | 4x   | +    | 2y  | = 9 | and   |
|------|----|----------|------|-----------|-----|--------|------|-----------|-------|---------|---------|------|------|-----|-----|-------|
|      | 2x | + y + 6  | = 0  | at points | Ра  | nd Q ı | resp | ectively. | . The | n the   | point O | divi | ides | the | se  | gment |
|      | PQ | in the r | atio |           |     |        |      |           |       |         |         |      |      |     |     |       |

- (a) 1:2 (b) 3:4
- (c) 2:1 (d) 4:3

2002]

(a) 
$$\frac{2b}{\sqrt{a^2+4b^2}}$$

(a) 
$$\frac{2b}{\sqrt{a^2-4b^2}}$$
 (b)  $\frac{\sqrt{a^2-4b^2}}{2b}$  (c)  $\frac{2b}{a-2b}$ 

$$(c) \frac{2b}{a-2b}$$

[IIT 2002]

(68) The locus of the mid-point of the line segment pining the focus to a moving point on the parabola  $y^2 = 4ax$  is another parabola with directrix

$$(a) x = -a$$

(a) 
$$x = -a$$
 (b)  $x = -\frac{a}{2}$ 

$$(c) = 0$$

$$(d) x = \frac{a}{2}$$

[IIT 2002]

tangent to the curves  $y^2 = 8x$  and xy = -1 is (69) The equation of the comma

(a) 
$$3y = 9x + 2$$
 (b)  $y = 2x$ 

(c) 
$$2y = x + 8$$
 (d)  $y = x + 2$  [IIT 2002]

(70) The number of yauge of k for which the system of equations (k + 1)x + 8y = 4k and kx + (k + 2)y = 3k - 1 has infinitely many solutions is

(c) 2 (d) infinite

[IIT 2002]

siangle formed by the tangent to the curve  $f(x) = x^2 + bx - b$  at the point 1) and the co-ordinate axes, lies in the first quadrant. If its area is 2, then the value of b is

$$(a) - 1$$

a) -1 (b) 3 (c) -3 (d) 1

[IIT 2001]

(72) The equation of the common tangent touching the circle  $(x - 3)^2 + y^2 = 9$  and the parabola  $y^2 = 4x$  above the X-axis is

(a) 
$$\sqrt{3} y = 3x + 1$$

(a) 
$$\sqrt{3} y = 3x + 1$$
 (b)  $\sqrt{3} y = -(x + 3)$ 

(c) 
$$\sqrt{3} y = (x + 3)$$

(c) 
$$\sqrt{3}$$
 y = (x + 3) (d)  $\sqrt{3}$  y = -(3x + 1)

[IIT 2001]

| (73) | The number   | of integer   | values o  | of m, fo | r which | the  | x-coordinate  | of the | point | 0 |
|------|--------------|--------------|-----------|----------|---------|------|---------------|--------|-------|---|
|      | intersection | of the lines | 3x + 4y = | 9 and y  | = mx +  | 1 is | also an integ | er, is |       |   |

(a) 2

(b) 0

(c) 4

(d) 1

IT 2001]

(74) If  $\overline{AB}$  is a chord of the circle  $x^2 + y^2 = r^2$  subtending a right ang at the centre, then the locus of the centroid of the triangle PAB as P move rcle is

(a) a parabola (b) a circle (c) an ellipse (d) a pair of t lines [IIT 2001]

(75) The equation of the directrix of the parabola  $v^2$ 

(a) x = -1 (b) x = 1

[IIT 2001]

(76) Area of the parallelogram form e lines y = mx, y = mx + 1, y = nx and y = nx + 1 equals

(c)  $\frac{1}{|m+n|}$  (d)  $\frac{1}{|m-n|}$ 

[IIT 2001]

 $y^2 = 12x$ , then k is

[IIT 2000]

triangle PQR is inscribed in the circle  $x^2 + y^2 = 25$ . If Q and R have linates (3, 4) and (-4, 3) respectively, then  $\angle QPR$  is equal to

(b)  $\frac{\pi}{3}$  (c)  $\frac{\pi}{4}$  (d)  $\frac{\pi}{6}$ 

[IIT 2000]

(79) Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is

(a) 2x - 9y = 7

(b) 2x - 9y = 11

(c) 2x + 9y = 11

(d) 2x + 9y = -7

[IIT 2000]

(80) The incentre of the triangle with vertices (1,  $\sqrt{3}$ ), (0, 0) and (2, 0) is

(a) 
$$\left(1, \frac{\sqrt{3}}{2}\right)$$

(b) 
$$\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$$

(a) 
$$\left(1, \frac{\sqrt{3}}{2}\right)$$
 (b)  $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$  (c)  $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$  (d)  $\left(1, \frac{1}{\sqrt{3}}\right)$ 

(d) 
$$\left(1, \frac{1}{\sqrt{3}}\right)$$

(81) If the circles  $x^2 + y^2 + 2x + 2ky + 6 = 0$  and  $x^2 + y^2 + 2ky + 6$  orthogonally, then k is 0 intersect

(a) 2 or 
$$-\frac{3}{2}$$

(a) 2 or 
$$-\frac{3}{2}$$
 (b) -2 or  $-\frac{3}{2}$  (c) 2 or  $\frac{3}{2}$  (d) -2 or

(c) 2 or 
$$\frac{3}{2}$$

[IIT 2000]

If the line x - 1 = 0 is the directrix of the the values of k is (82)

(a) 
$$\frac{1}{8}$$
 (b) 8 (c) 4 (d)

[IIT 2000]

(83) If  $x_1$ ,  $x_2$ ,  $x_3$  as well as  $y_1$ ,  $y_2$ ,  $y_3$  re in G. P. with the same common ratio, then the points  $(x_1, y_1)$ ,  $(x_2, y_2)$  and  $(x_3, y_3)$ 

(a) lie on a straight line (b) lie on an ellipse (c) lie on a circle (d) are vertices of a triangle

[IIT 1999]

(84) The curve described parametrically by  $x = t^2 + t + 1$ ,  $y = t^2 - t + 1$  represents

- (a) a pair of straight lines (c) a traigle

- (b) an ellipse (d) a hyperbola

[IIT 1999]

 $P(a \sec \theta, b \tan \theta)$  and  $Q(a \sec \phi, b \tan \phi)$ , where  $\theta + \phi = \frac{\pi}{2}$ , be two points on the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ . If (h, k) is the point of intersection of the normals at P

(a) 
$$\frac{a^2 + b^2}{a}$$

(a) 
$$\frac{a^2 + b^2}{a}$$
 (b) -  $\frac{a^2 + b^2}{a}$  (c)  $\frac{a^2 + b^2}{b}$  (d) -  $\frac{a^2 + b^2}{b}$  [IIT 1999]

(c) 
$$\frac{a^2 + b^2}{b}$$

$$(d) - \frac{a^2 + b^2}{b}$$

(86) If two distinct chords drawn from the point (p, q) on the circle  $x^2 + y^2 = px + qy$ (where  $pq \neq 0$ ) are bisected by the X-axis, then

$$(a) p^2 = q^2$$

(a) 
$$p^2 = q^2$$
 (b)  $p^2 = 8q^2$  (c)  $p^2 < 8q^2$  (d)  $p^2 > 8q^2$  [IIT 1999]

$$(c) p^2 < 8q^2$$

$$(d) p^2 > 8a$$



(a) 
$$3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$$

(b) 
$$3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$$

(c) 
$$3x^2 - 3y^2 + 8xy + 10x + 15y + 20 = 0$$

(d) 
$$3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$$

T 1999 1

(87) If two distinct chords drawn from the point (p, q) on the circle 
$$x^2 + y^2 = px + qy$$
 (where pq  $\neq$  0) are bisected by the X-axis, then

(a) 
$$p^2 = q^2$$

(a) 
$$p^2 = q^2$$
 (b)  $p^2 = 8q^2$  (c)  $p^2 < 8q^2$ 

$$(c) p^2 < 8q^2$$

$$d \rightarrow 8q^2$$

[ IIT 1999 ]

(88) If 
$$x = 9$$
 is the chord of contact of the hyperbola  $y^2 - y^2 = 9$ , then the equation of the corresponding pair of tangents is

(a) 
$$9x^2 - 8y^2 + 18x - 9 = 0$$
  
(c)  $9x^2 - 8y^2 - 18x - 9 = 0$ 

$$(b) 9x^2 (8)^2 - 18x + 9 = 0$$

[IIT 1999]

$$(C) 9x - 6y - 16x - 9 = 0$$

$$(4) x^2 - 8y^2 + 18x + 9 = 0$$

(89) Let 
$$L_1$$
 be a straight line passing through the origin and  $L_2$  be the straight line  $x + y = 1$ . If the intercept hade by the circle  $x^2 + y^2 - x + 3y = 0$  on  $L_1$  and  $L_2$  are equal, then which of the following equations can represent  $L_1$ ?

$$y = 0$$
 (c)  $x + 7y = 0$  (d)  $x - 7y = 0$ 

$$(d) x - 7y = 0$$

[IIT 1999]

(90) On the ellipse 
$$4x^2 + 9y^2 = 1$$
, the points at which the tangents are parallel to the line  $8x = 9$ .

$$\left(\frac{2}{5}, \frac{1}{5}\right)$$

(b) 
$$\left(-\frac{2}{5}, \frac{1}{5}\right)$$

(b) 
$$\left(-\frac{2}{5}, \frac{1}{5}\right)$$
 (c)  $\left(-\frac{2}{5}, -\frac{1}{5}\right)$  (d)  $\left(\frac{2}{5}, -\frac{1}{5}\right)$ 

(d) 
$$\left(\frac{2}{5}, -\frac{1}{5}\right)$$

[IIT 1999]

If the diagonals of a parallelogram PQRS are along the lines 
$$x + 3y = 4$$
 and  $6x - 2y = 7$ , then PQRS must be a

- (a) rectangle (b) square (c) cyclic quadrilateral (d) rhombus

[IIT 1998]

(92) The number of common tangents to the circles 
$$x^2 + y^2 - 6x - 8y = 24$$
 and  $x^2 + y^2 = 4$  is

- (a) 0 (b) 1 (c) 3 (d) 4

[IIT 1998]

(93) If P = (x, y), Q = (3, 0) and R = (-3, 0) and  $16x^2 + 25y^2 = 400$ , then PQ + PR =

- (a) 8
- (b) 6 (c) 10
- (d) 12

[IIT 1998]

(94) If P(1, 2), Q(4, 6), R(5, 7) and S(a, b) are the vertices\_or palallelogram PQRS, then

- (a) a = 2, b = 4 (c) a = 2, b = 3 (d) a = 3, b = 5

[IIT 1998]

(95) If the vertices P, Q, R of a triangle PQR are ration, points, which of the following points of the triangle PQR is / are always ration

- (a) centroid (b) incentre (c) circumcentre
- orthocentre

[IIT 1998]

(96) The number of values of c such straight line y = mx + c touches the curve  $\frac{x^2}{4} + y^2 = 1$  is

- (a) 0 (b) 1
- d) infinite

[IIT 1998]

 $a^2$  intersects the hyperbola xy =  $c^2$  in four points P(x<sub>1</sub>, y<sub>1</sub>), (97) If the circle x

- (b)  $y_{1} + y_{2} + y_{3} + y_{4} = 0$ (d)  $y_{1} y_{2} y_{3} y_{4} = c^{4}$

[IIT 1998]

gle between a pair of tangents drawn from a point P to the circle  $y^2 + 4x - 6y + 9 \sin^2 \alpha + 13 \cos^2 \alpha = 0$  is  $2\alpha$ . The equation of the locus of the point P is (a)  $x^2 + y^2 + 4x - 6y + 4 = 0$  (b)  $x^2 + y^2 + 4x - 6y - 9 = 0$ (c)  $x^2 + y^2 + 4x - 6y - 4 = 0$  (d)  $x^2 + y^2 + 4x - 6y + 9 = 0$ 

[IIT 1996]

(99) The orthocentre of the triangle formed by the lines xy = 0 and x + y = 1 is

- (a)  $\left(\frac{1}{2}, \frac{1}{2}\right)$  (b)  $\left(\frac{1}{3}, \frac{1}{3}\right)$  (c) (0, 0) (d)  $\left(\frac{1}{4}, \frac{1}{4}\right)$

[IIT 1995]

- $\frac{x^2}{16} + \frac{y^2}{9} = 1$  and (100) The radius of the circle passing through the foci of the ellipse having its centre at (0, 3) is
  - (a) 4
- (b) 3 (c)  $\sqrt{12}$  (d)  $\frac{7}{2}$

1995 ]

- (101) Consider a circle with its centre lying on the focus of the = 2px such that it touches the directrix of the parabola. Then a point intersection of the circle and the parabola is

  - (a)  $\left(\frac{p}{2}, p\right)$  (b)  $\left(\frac{p}{2}, -p\right)$  (c)  $\left(-\frac{p}{2}, p\right)$

- The locus of the centre of a circle which outles externally the circle  $x^2 + y^2 6x 6y + 14 = 0$  and also touches the wais love by the equation (102) The locus of the centre of a circle which
  - (a)  $x^2 6x 10y + 14 = 0$ (c)  $y^2 6x 10y + 14 = 0$
- $y^2 10x 6y + 14 = 0$  $y^2 10x 6y + 14 = 0$

[IIT 1993]

- (103) The centre of a circle pa sing through the points (0, 0), (1, 0) and touching the circle  $x^2 + y^2 = 9^4$

- $\left(\frac{1}{2},\frac{3}{2}\right)$  (c)  $\left(\frac{1}{2},\frac{1}{2}\right)$  (d)  $\left(\frac{1}{2},-2^{\frac{1}{2}}\right)$

- m of the distances of a point from two perpendicular lines is 1, then its
- straight line
- (d) two intersecting lines

[IIT 1992]

- (105) Line L has intercepts a and b on the co-ordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line has intercepts p and q.

  - (a)  $a^2 + b^2 = p^2 + q^2$  (b)  $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$

  - (c)  $a^2 + p^2 = b^2 + q^2$  (b)  $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$

[ IIT 1990 ]

(106) If the two circles  $(x - 1)^2 + (y - 3)^2 = r^2$  and  $x^2 + y^2 - 8x + 2y + 8 = 0$  intersect in two distinct points, then

- (a) 2 < r < 8 (b) r < 2 (c) r = 2 (d) r > 2

IT 1989 ]

154 sq. (107) The lines 2x - y = 5 and 3x - 4y = 7 are diameters of a qunits, then the equation of this circle is

- (a)  $x^2 + y^2 + 2x 2y = 62$  (b)  $x^2 + y^2 + 2x 2y = 62$  (c)  $x^2 + y^2 + 2x + 2y = 47$  (d)  $x^2 + y^2 2x + 2y = 62$

[IIT 1989]

(108) Let g(x) be a function defined on (-1, 1). If the area of the equilateral triangle with  $\sqrt{4}$ , then the function g(x) is two of its vertices at (0, 0) and [x, g()) is

- (a)  $g(x) = \pm \sqrt{1 x^2}$
- (c)  $g(x) = -\sqrt{1-x^2}$

[IIT 1989]

(109) If P = (1, 0), Q = (-1, 1)and R = (2, 0) are three given points, then the locus of the point S satisfying the relation  $SQ^2 + SR^2 = 2SP^2$ , is

- (a) a straight me arallel to X-axis (b) a circle passing through the origin (c) a circle with me centre at the origin (d) a straight has a rallel to Y-axis [1]

[IIT 1988]

e passes through the point (a, b) and cuts the circle  $x^2 + y^2 = k^2$ gonally, then the equation of the locus of its centre is

- )  $2ax + 2by (a^2 + b^2 k^2) = 0$ (b)  $2ax + 2by (a^2 b^2 + k^2) = 0$ (c)  $x^2 + y^2 3ax 4by + (a^2 + b^2 k^2) = 0$ (d)  $x^2 + y^2 2ax 3by + (a^2 b^2 k^2) = 0$

[IIT 1988]

(111) The equation of the tangents drawn from the origin to the circle  $x^{2} + y^{2} - 2rx - 2hy + h^{2} = 0$ , are

- (a) x = 0 (b)  $(h^2 r^2)x 2rhy = 0$ (c) y = 0 (d)  $(h^2 r^2)x + 2rhy = 0$

[IIT 1988]

(112) If the line ax + by + c = 0 is a normal to the curve xy = 1, then

- (a) a > 0, b > 0(b) a > 0, b < 0(c) a < 0, b > 0(d) a < 0, b < 0

- (e) none of these

IT 1986]

(113) The points  $\left(0, \frac{8}{3}\right)$ , (1, 3) and (82, 30) are vertices of

- (a) an obtuse angled triangle
- (b) an acute angled tria gle
- (c) a right angled triangle
- (d) an isosceles triang

(e) none of these

[IIT 1986]

(114) All points lying inside the triangle formed by t (1, 3), (5, 0) and (-1, 2) satisfy

- (a)  $3x + 2y \ge 0$
- c)  $2x 3y 12 \le 0$ (b) 2x + y - 13
- (d)  $-2x + y \ge 0$
- (e) none of the

[IIT 1986]

(115) Three lines px + qy + r = 0 $\rightarrow$  + p = 0 and rx + py + q = 0 are concurrent if

[IIT 1985]

e prodpoints of a chord of the circle  $x^2 + y^2 = 4$  which subtends a (116) The locus of right angle at the origin is

- (b)  $x^2 + y^2 = 1$  (c)  $x^2 + y^2 = 2$  (d) x + y = 1 [IIT 1984]

centre of the circle passing through the point (0, 1) and touching the curve x<sup>2</sup> at (2, 4) is

- (a)  $\left(\frac{-16}{5}, \frac{27}{10}\right)$  (b)  $\left(\frac{-16}{7}, \frac{53}{10}\right)$
- (c)  $\left(\frac{-16}{5}, \frac{53}{10}\right)$  (d) none of these

[IIT 1983]

(118) The straight line x + y = 0, 3x + y - 4 = 0, x + 3y - 4 = 0 form a triangle which is

- (a) isosceles
- (b) right angled
- (c) equilateral
- (d) none of these

[IIT 1983]



- (a) the area of triangle ABC is maximum when it is isosceles
- (b) the area of triangle ABC is minimum when it is isosceles(c) the perimeter of triangle ABC is minimum when it is isosceles
- (d) none of these

T 1983 ]

- (120) The equation of the circle passing through (1, 1) and the oints of intersection of the circles  $x^2 + y^2 + 13x - 3y = 0$  and  $2x^2 + 2y^2 + 4x - 7y - 3y = 0$ 0 is
  - (a)  $4x^2 + 4y^2 30x 10y 25 = 0$  (b)  $4x^2$  $80x \spadesuit 13y - 25 = 0$
  - (c)  $4x^2 + 4y^2 17x + 10y + 25 = 0$  (d) none [IIT 1983]
- (121) The equation  $\frac{x^2}{1-r} \frac{y^2}{1+r}$ 
  - (a) an ellipse (b) a hyperbola circle (d) none of these [ IIT 1981 ]
- (122) Given the four lines équations, 2x + 3y - 4 = 0 and 4x
  - once rent (b) they are the sides of a quadrilateral (a) they are all
  - (c) none of

[IIT 1980]

- (-a, -b), (0, 0), (a, b) and  $(a^2, ab)$  are (123) The por
  - - (b) vertices of a parallelogram
    - vertices of a rectangle (d) none of these
      - [ IIT 1979 ]

## 11 - TWO DIMENSIONAL GEOMETRY (Answers at the end of all questions)

|          |      |     |     |      |     |    |        | Ans | wers | <u> </u>    |     |            |    |    |     |      |             |     |
|----------|------|-----|-----|------|-----|----|--------|-----|------|-------------|-----|------------|----|----|-----|------|-------------|-----|
| 1 2      | 3    | 4   | 5   | 6    | 7   | 8  | 9      | 10  | 11   | 12          | 13  | 14         | 15 | 16 | 17  |      | 19          | 20  |
| a a      | а    | d   | С   | С    | b   | d  | d      | а   | d    | а           | d   | С          | d  | b  | a   | а    | 7           | а   |
|          |      |     |     |      |     |    |        |     |      |             |     |            |    |    | 1   |      | <b>&gt;</b> |     |
| 21 22    | 23   | 24  | 25  | 26   | 27  | 28 | 29     | 30  | 31   | 32          | 33  | 34         | 35 | 75 | Y   | 38   | 39          | 40  |
| b d      | d    | d   | С   | С    | d   | d  | С      | а   | С    | а           | С   | С          | С  |    | a   | d    | С           | d   |
|          |      |     |     |      |     |    |        |     |      |             |     |            |    |    |     |      |             |     |
| 1 42     | 43   | 44  | 45  | 46   | 47  | 48 | 49     | 50  | 51   | 52          | 53  | 54         | 5  | 53 | 57  | 58   | 59          | 60  |
| c a      | а    | b   | b   | b    | а   | а  | b      | а   | b    | С           | С   | 3          | a  | а  | d   | b    | а           | а   |
|          |      |     |     |      |     |    |        |     |      | _           |     | <b>/</b> 1 |    |    |     |      |             |     |
| 62       | 63   | 64  | 65  | 66   | 67  | 68 | 69     | 70  | 71   | 7           | 73  |            | 75 | 76 | 77  | 78   | 79          | 80  |
| b a      | а    | С   | С   | b    | а   | С  | d      | b   | С    | 4           | а   | b          | d  | d  | b   | С    | d           | d   |
|          |      |     |     |      |     |    |        |     |      | X           |     |            |    |    |     |      |             |     |
| 1 82     | 83   | 84  | 85  | 86   | 87  | 88 | 89     | 2   |      | <b>1</b> 22 | 93  | 94         | 95 | 96 | 9   | 97   | 98          | 99  |
| СС       | а    | С   | d   | d    | b   | b  | a, c   | b,  | d    | b           | С   | С          | а  | С  | a,t | ,c,d | d           | С   |
|          |      |     |     |      |     |    | 4      |     |      |             |     |            |    |    |     |      |             |     |
| 100      | 101  | 102 | 1   | 03   | 104 | 1  |        | 16  | 107  | , <u> </u>  | 08  | 109        | 11 | 10 | 111 | 112  | 2           | 113 |
|          | a,b  | d   |     | d    | a 🗸 |    | 0      | d   | С    |             | b,c | d          | a  |    | a,b | b,c  |             | е   |
| <u> </u> |      |     |     |      | 4   | 7  | 7      |     |      |             |     |            |    |    |     |      |             |     |
| 114      | 115  | 116 | 117 | 1000 | प्र | a  | 20   1 | 21  | 122  | 123         |     |            | 1  | 1  |     |      |             |     |
|          | ,b,c | C   | C_  | а    | а   |    | b      | d   | C    | a           |     |            |    |    |     |      |             |     |
|          |      | 1   | •   |      |     |    |        |     |      |             |     |            |    |    |     |      |             |     |