2006

रसायन विज्ञान

प्रश्नपत्र-।

CHEMISTRY

Paper-I

निर्धारित समय : तीन घण्टे]

[पूर्णांक : 200

Time allowed: Three Hours]

[Maximum Marks: 200

- निर्देश: (i) इस प्रश्न-पत्र में दो खण्ड 'अ' और 'ब' हैं। प्रत्येक खण्ड में चार प्रश्न हैं। अभ्यर्थी प्रश्न संख्या 1 और 5 अवश्य हल करें जो अनिवार्य हैं तथा शेष प्रश्नों में से तीन प्रश्नों के उत्तर दें जिनमें प्रत्येक खण्ड से कम से कम एक प्रश्न हो।
 - (ii) सभी प्रश्नों के अंक समान हैं।
 - (iii) एक प्रश्न के सभी भागों का उत्तर देने के बाद ही दूसरे प्रश्न का उत्तर दें।
- Note: (i) This question paper has two Sections A and B. Each Section has four questions. Candidate must attempt question Nos. 1 and 5 which are compulsory and three more questions from the remaining questions, selecting at least one from each Section.
 - (ii) All questions carry equal marks.
 - (iii) All parts of the question be answered together before answering a new question.

खण्ड – अ

SECTION - A

- 1. (अ) निम्नलिखित का कारण स्पष्ट कीजिए :
 - हीरा ग्रेफॉइट की अपेक्षा अधिक कठोर होता है ।
 - (ii) जल तथा ऑक्सीजन डाईफ्लोराइड अणुओं के आकार लगभग समान हैं ।
 - (iii) $\mathrm{Si}Cl_4$ का पानी द्वारा जल अपघटन हो जाता है जबकि $\mathrm{CC}l_4$ निष्क्रिय है ।
 - $({
 m iv})$ $[{
 m Ni(CN)}_4]^{2-}$ प्रति चुम्बकीय है किन्तु $[{
 m NiC} l_4]^{2-}$ अनुचुम्बकीय है ।
 - (v) SiO_2 ठोस है लेकिन CO_2 गैस है ।

आई.यू.पी.ए.सी. पद्धति के अनुसार निम्न संकर यौगिकों का नाम लिखिए : $[Cr(NH_3)_6][Co(CN)_6]$ (i) (ii) $K_3[Fe(C_2O_4)_3]$ (iii) $K_2[PtCl_6]$ (iv) $[Pt(NH_3)_2Cl_4]$ (v) $[Cr(H_2O)_6]Cl_3$ एक रेडियोएक्टिव तत्त्व की प्रारम्भिक मात्रा 8 ग्राम है, बताइये कि 24 वर्षों के बाद उसकी कितनी मात्रा शेष रहेगी यदि तत्त्व की अर्द्ध आयु 8 वर्ष है । निम्न में से किसकी अधिकता है : F या Cl की प्रथम आयनिक ऊर्जा (ii) O या O- की इलेक्ट्रॉन बंधुता (iii) K+ या Cl- की आयनिक त्रिज्या (iv) Na+ या F- की ध्रुवण क्षमता K या Cr की इलेक्ट्रॉन ऋणात्मकता (v) Give the reasons for the following: (a) Diamond is harder than graphite. (i) The shape of water and oxygen difluoride molecules are almost similar. (ii) (iii) $SiCl_4$ is hydrolysed by water but CCl_4 is inert. (iv) $[Ni(CN)_4]^{2-}$ is diamagnetic but $[NiCl_4]^{2-}$ is paramagnetic. SiO₂ is solid but CO₂ is gas. Name the following complexes according to the I.U.P.A.C. system. $[Cr(NH_3)_6][Co(CN)_6]$ (i) (ii) $K_3[Fe(C_2O_4)_3]$ (iii) $K_2[PtCl_6]$ (iv) $[Pt(NH_3)_2Cl_4]$ (v) $[Cr(H_2O)_6]Cl_3$ The original amount of a radioactive substance is 8.0 gm. Give the amount (c) which will be left in 24 years if the half life of the element is 8 years. KAN-35 2

		(i)	first ionization energy F or Cl		
		(ii)	electron affinity of O or O ⁻		
		(iii)	ionic radius of K ⁺ or Cl ⁻		
		(iv)	polarizing power of Na ⁺ or F ⁻		
		(v)	electro negativity of K or Cr		
2.	(अ)) लैन्थेनाइड संकुचन को समझाइये । लैन्थेनाइड संकुचन के क्या प्रभाव होते हैं ?			
	(ब)	निम्नलि	निम्नलिखित अणुओं का VSEPR के आधार पर आकार खींचिए :		
		(i)	SF ₄ (ii) H ₃ O ⁺		
		(iii)	BrF_5 (iv) ICl_2^-		
	(स)	चतुष्फत	लकीय क्रिस्टल क्षेत्र में d-कक्षकों के ऊर्जा स्तरों का विघटन को समझाइये ।		
	(द)) कौन अधिक स्थायी है $[Cu(NH_3)_4]^{2+}$ या $[Cu(CN)_4]^{2-}$ एवम् क्यों ?			
	(a)		Explain Lanthanide contraction. What are the consequences of Lanthanide contractions?		
	71.				
	(b)		the shapes of the following molecules on the basis of VSEPR:		
			SF ₄ (ii) H ₃ O ⁺		
		(iii)	BrF_5 (iv) ICl_2^-		
	(c)	Expla	in the splitting of energy levels of d-orbitals in tetrahedral crystal field.		
	(d)	Which	n is more stable $[Cu(NH_3)_4]^{2+}$ or $[Cu(CN)_4]^{2-}$ and why?		
3.	(왜)	'नर्स्ट वि	वेतरण नियम' को समझाइये तथा उसकी उपयोगिताओं का वर्णन कीजिए ।		
	(অ)	सिलिको कीजिए	न्स क्या हैं और ये कैसे बनाए जाते हैं ? इनके गुणों एवम् औद्योगिक उपयोग का वर्णन ।		
	(स)	[NiCl ₄ होता है,] ^{2–} तथा [Ni(CO) ₄] दोनों चतुष्फलकीय होते हैं जबिक उनके चुम्बकीय व्यवहार में अन्तर क्यों ?		
	(द)	[Cr(en]	$ ho_2 ext{Cl}_2 brace$ $ ho_2 ext{Cl}_2 brace$ $ ho_2 ext{Cl}_2 brace$ $ ho_3 brace$ $ ho_4 brace$ $ ho_5 brace$ $ ho_6 brace$		

(d) Which of the following has a higher

3.

i and describe its applications.

- (b) What are silicones and how are they prepared? Give their properties and industrial uses.
- (c) $[NiCl_4]^{2-}$ and $[Ni(CO)_4]$ are tetrahedral but they differ in their magnetic behaviour, why?
- (d) Write all possible isomers of the complex $[Cr(en)_2Cl_2]$ Cl.
- 4. (अ) एक आदर्श गैस की एन्ट्रॉपी परिवर्तन के लिए एक व्यंजक का निगमन कीजिए यदि ताप बदलता है ।
 - (ब) द्वि परमाणुक ${
 m O}_2$ एवम् NO+ अणुओं का अणुकक्षक ऊर्जा स्तर आरेख रेखांकित कीजिए एवम् आबंधन लक्षणों की विवेचना कीजिए ।
 - (स) स्पष्ट कीजिए कि घूर्णन स्पैक्ट्रा की सहायता से अन्तर परमाणुक दूरियाँ किस प्रकार से ज्ञात करोगे ।
 - (द) दी-ब्रौगली ने इलेक्ट्रॉन की तरंग प्रकृति को किस प्रकार समझाया ?
 - (a) Derive an expression for the change in entropy of an ideal gas with change in temperature.
 - (b) Draw the molecular orbital energy level diagrams for diatomic molecules O₂ and NO⁺ and discuss bonding features.
 - (c) Explain how inter atomic distances are determined by rotational spectra.
 - (d) How did de-Broglie explain the wave nature of electron?

खण्ड - ब

SECTION - B

- (अ) पद रासायिनक विभव को समझाइये तथा ताप के साथ रासायिनक विभव के परिवर्तन के लिए एक व्यंजक प्राप्त कीजिए ।
 - (ब) श्रोडिंगर तरंग समीकरण लिखिए एवम् तरंग फलन ψ के महत्त्व को समझाइये ।
 - (स) दृढ़ घूर्णन के लिए घूर्णन ऊर्जा तथा संनादी दोलन के कम्पन ऊर्जाओं के लिए व्यंजक लिखिये तथा उसमें प्रयुक्त पदों को समझाइये ।
 - (द) निम्नलिखित को परिभाषित कीजिए :
 - (i) मात्रक कोष्ठिकाएँ
 - (ii) मिलर अंक
 - (iii) सममिति सिद्धान्त

KAN-35

- (a) Explain the term chemical potential and obtain an expression for the variation of chemical potential with temperature.
- (b) Write Schrödinger wave equation and explain the significance of the wave function ψ .
- (c) Write the expression for rotational energy for rigid rotation and vibrational energy for harmonic oscillation and explain the term involved.
- (d) Define the following:
 - (i) Unit cell
 - (ii) Miller indices
 - (iii) Law of symmetry
- 6. (अ) अधिशोषण को परिभाषित कीजिए तथा भौतिक एवम् रासायनिक अधिशोषण में भेद को उदाहरण सिहत समझाइये ।
 - (ब) EAN नियम क्या है ? इस नियम के आधार पर निम्निलिखित के लिए n के मान की गणना कीजिए : ${\rm Fe}_2({\rm CO})_n$ तथा ${\rm Co(CO)}_n$
 - (स) निम्नलिखित पर टिप्पणियाँ लिखिए:
 - (i) एन्जाइम उत्प्रेरण
 - (ii) फ्रांक-कॉण्डन सिद्धान्त
 - (द) विभिन्न प्रकार के इलेक्ट्रॉनिक संक्रमणों का ब्यौरा दीजिए ।
 - (a) Define adsorption and distinguish between physical and chemical adsorption giving examples.
 - (b) What is EAN rule? On the basis of this rule, evaluate the value of n for the following:

Fe₂(CO)_n and Co(CO)_n

- (c) Write notes on the following:
 - (i) Enzyme catalysis
 - (ii) Frank-Condon Principle
- (d) Give an account of various types of electronic transitions.
- 7. (अ) निम्नलिखित अम्लों को उनकी बढ़ती हुई शक्ति के क्रम में संयोजित कीजिए और कारण बताइये : HCl, HBr, H_2SO_4 , H_2Se
 - (ब) रमन स्पैक्ट्रम में स्टोक्स रेखाओं एवम् एन्टी स्टोक्स रेखाओं से क्या अभिप्राय है ?

- (स) जाण्यक कक्षक सिद्धान्त निम्न की किस प्रकार समझाता है ?
 - (i) O_2^+ की आबन्ध कोटि O_2^- से ज्यादा है ।
 - (ii) N_2^+ की आबन्ध कोटि N_2 से कम है ।
 - (iii) NO+ की आबन्ध ऊर्जा NO से ज्यादा है ।
 - (iv) CO- की आबन्ध लम्बाई CO+ से अधिक है ।
 - (द) चल सीमा विधि में 0.01 N HCl विलयन को लीथियम क्लोराइड विलयन पर उतराया गया । प्रयोग में लाये ट्यूब का व्यास 1 cm. था । 11.0 mm एम्पीयर की विद्युत 20 मिनट तक प्रवाहित करने पर H⁺ आयन Li⁺ आयन सीमा 13.9 cm. तक खिसकी । प्रयोग किए गए HCl विलयन में H⁺ तथा Cl⁻ आयनों के अभिगमनांकों की गणना कीजिए ।
 - (a) Arrange the following acids in the order of their increasing strength and explain with reason.

HCl, HBr, H₂SO₄, H₂Se

- (b) What is meant by stokes and antistokes lines in Raman spectrum?
- (c) How does M.O. theory explain the following?
 - (i) Bond order of O_2^+ is more than O_2 .
 - (ii) Bond order of N_2^+ is less than N_2 .
 - (iii) Bond energy of NO+ is higher than of NO.
 - (iv) Bond length of CO⁻ is larger than of CO⁺.
- (d) In a moving boundary experiment 0.01 N HCl solution was floated on lithium chloride solution. The tube used had a diameter of 1 cm. When a current of 11.0 mm ampere was passed for 20 minutes, the H⁺ ion Li⁺ ion boundary moves through 13.9 cm. Calculate the transport number of H⁺ and Cl⁻ ions in the HCl solution used.
- 8. (अ) उचित अभिक्रियाओं सिंहत अम्लीय, क्षारीय एवम् उदासीन माध्यमों में ${\rm KMnO_4}$ के तुल्यांक भार की गणना कीजिए । (K = 39, Mn = 55 तथा O = 16)
 - (ब) बफर विलयन क्या है ? बफर विलयन की क्रिया समझाइये । बफर विलयन का pH किस प्रकार निकाला जाता है ?
 - (स) निम्न को परिभाषित कीजिए :
 - (i) σ बन्ध तथा π बन्ध
 - (ii) सिक्रयता एवम् सिक्रयता गुणांक
 - (द) विद्युत रासायनिक तुल्यांक की परिभाषा दीजिए । यह रासायनिक तुल्यांक से कैसे सम्बन्धित है ?

- by appropriate reactions. (K = 39, Mn = 55 and O = 16)
- (b) What are buffer solutions? Explain the action of buffer solutions. How is the pH of a buffer solution calculated?
- (c) Define the following:
 - (i) σ bond and π bond
 - (ii) activity and activity coefficient
- (d) Define electrochemical equivalent. How is it related to the chemical equivalent?

WANI 25

