Examrace: Downloaded from examrace.com [https://www.examrace.com/]
For solved question bank visit doorsteptutor.com
[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Ratio, Proportion and Percentages Formulas and Tricks

Get unlimited access to the best preparation resource for competitive exams : get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]- for all subjects of your exam.

Ratio \& Proportion

- The equality of two ratios is called a proportion. If $a: b=c: d$, we write $a: b:: c: d$ and we say that $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in proportion.In a proportion, the first and fourth terms are known as extremes, while the second and third are known as means.
- Product of extremes $=$ Product of means
- Mean proportion between a and b is
- The compounded ratio of the ratios $(a: b),(c: d),(e: f)$ is (ace $: b \mathrm{~d} f)$
- $a^{2}: b^{2}$ is a duplicate ratio of $a: b$
- $\sqrt{a}: \sqrt{b}$ is a sub-duplicate ration of $a: b$
- $a^{3}: b^{3}$ is a triplicate ratio of $a: b$
- $a^{1 / 3}: b^{1 / 3}$ is a sub-triplicate ratio of $a: b$
- If $\frac{a}{b}=\frac{c}{d}$, then,$\frac{a+b}{b}=\frac{c+d}{d}$, which is called the Componendo.
- If $\frac{a}{b}=\frac{c}{d}$, then, $\frac{a-b}{b}=\frac{c-d}{d}$, which is called the dividendo
- If $\frac{a}{b}=\frac{c}{d}$, then, $\frac{a+b}{a-b}=\frac{c+d}{c-d}$, which is called the Componendo \& Dividendo.
- Variation: We say that x is directly proportional to y if $x=k y$ for some constant k and we write, $x \propto y$.
- Also, we say that x is inversely proportional to y if $x=\frac{k}{y}$ for some constant k and we write $x \propto \frac{1}{y}$

Ratios

- If $a: b=c: d$, then $a: b=c: d=(a+c):(b+d)$
- If $a<b$, then for a positive quantity x,
$\frac{a+x}{b+x}>\frac{a}{b}$ and $\frac{a-x}{b-x}<\frac{a}{b}$. If $a>b$, then for a positive quantity x,
- $\frac{a+x}{b+x}<\frac{a}{b}$ and $\frac{a-x}{b-x}>\frac{a}{b}$

If $a: b:: c: d$ or $\frac{a}{b}=\frac{c}{d}$, then

- $\frac{a}{c}=\frac{b}{d} \ldots$ Alternendo Law
- $\frac{b}{a}=\frac{d}{c} \ldots$ Invertendo Law
- $\frac{a+b}{b}=\frac{c+d}{d} \ldots$ Componendo Law
- $\frac{a-b}{b}=\frac{c-d}{d}$...Dividendo Law
- $\frac{a+b}{a-b}=\frac{c+d}{c-d} \ldots$ Componendo and Dividendo Law
- If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots k$, then $\frac{a+c+e+\ldots}{b+d+f+\ldots}=k$
- If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots k$, then p, q, rare real numbers, then $\frac{p a^{n}+q c^{n}+r e^{n}+\ldots}{p b^{n}+q d^{n}+r f^{n}+\ldots}=k^{n}$

Percentage

- To express $\mathrm{x} \%$ as a fraction, we have $x \%=\frac{x}{100}$
- To express ${ }_{\frac{a}{b}}$ as a percent, we have $\frac{a}{b}=\left(\frac{a}{b} \times 100\right) \%$
- If ' A ' is R \% more than ' B ', then ' B ' is less than ' A ' by

OR
If the price of a commodity increases by R \% , then the reduction in consumption, not to increase the expenditure is $\left(\frac{100 R}{[100+R]}\right) \%$

- If ' A ' is R \% less than ' B ' , then ' B ' is more than ' A ' by

OR
If the price of a commodity decreases by R \% , then the increase in consumption, not to increase the expenditure is $\left\{\frac{100 R}{[100-R]}\right\} \%$

- If the population of a town is ' P ' in a year, then its population after ' N ' years is
$P \cdot\left(1+\left(\frac{R}{100}\right)\right)^{N}$
- If the population of a town is ' P ' in a year, then its population ' N ' years ago is

$$
\frac{P}{\left(1+\left(\frac{R}{100}\right)\right)^{N}}
$$

Percentage Change

- Percentage Change $=\frac{\text { Final Value }- \text { Initial Value }}{\text { Initial Value }} \times 100$
- For two successive changes of $a \%$ and $b \%$, Total Percentage Change $=\left(a+b+\frac{a b}{100}\right) \%$

