## Examrace: Downloaded from examrace.com [https://www.examrace.com/]

For solved question bank visit doorsteptutor.com

[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

# Ratio, Proportion and Percentages Formulas and Tricks

Get unlimited access to the best preparation resource for competitive exams : <u>get</u> questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]- for all subjects of your exam.

### Ratio & Proportion

- The equality of two ratios is called a proportion. If a:b=c:d, we write a:b::c:d and we say that a, b, c, d are in proportion. In a proportion, the first and fourth terms are known as extremes, while the second and third are known as means.
- Product of extremes = Product of means
- · Mean proportion between a and b is
- The compounded ratio of the ratios (a:b), (c:d), (e:f) is (ace:bdf)
- $a^2:b^2$  is a duplicate ratio of a:b
- $\sqrt{a}$ :  $\sqrt{b}$  is a sub-duplicate ration of a:b
- $a^3:b^3$  is a triplicate ratio of a:b
- $a^{1/3}:b^{1/3}$  is a sub-triplicate ratio of a:b
- If  $\frac{a}{b} = \frac{c}{d}$ , then  $\frac{a+b}{b} = \frac{c+d}{d}$ , which is called the Componendo.
- If  $\frac{a}{b} = \frac{c}{d}$ , then,  $\frac{a-b}{b} = \frac{c-d}{d}$  , which is called the dividendo
- If  $\frac{a}{b} = \frac{c}{d}$ , then,  $\frac{a+b}{a-b} = \frac{c+d}{c-d}$ , which is called the Componendo & Dividendo.
- Variation: We say that x is directly proportional to y if x = ky for some constant k and we write,  $x \propto y$ .
- Also, we say that x is inversely proportional to y  $ifx = \frac{k}{y}$  for some constant k and we write  $x \propto \frac{1}{y}$

#### Ratios

- If a:b=c:d, then a:b=c:d=(a+c):(b+d)
- If a < b, then for a positive quantity x,

 $\frac{a+x}{b+x} > \frac{a}{b}$  and  $\frac{a-x}{b-x} < \frac{a}{b}$ . If a > b, then for a positive quantity x,

•  $\frac{a+x}{b+x} < \frac{a}{b}$  and  $\frac{a-x}{b-x} > \frac{a}{b}$ 

If 
$$a:b::c:dor\frac{a}{b}=\frac{c}{d}$$
, then

- $\frac{a}{c} = \frac{b}{d}$ ...Alternendo Law
- $\frac{b}{a} = \frac{d}{c}$ ...Invertendo Law
- $\frac{a+b}{b} = \frac{c+d}{d}$ ...Componendo Law
- $\frac{a-b}{b} = \frac{c-d}{d}$ ...Dividendo Law
- $\frac{a+b}{a-b} = \frac{c+d}{c-d}$ ...Componendo and Dividendo Law
- If  $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots k$ , then  $\frac{a+c+e+\dots}{b+d+f+\dots} = k$
- If  $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots k$ , then p, q, r are real numbers, then  $\frac{pa^n + qc^n + re^n + \dots}{pb^n + qd^n + rf^n + \dots} = k^n$

### Percentage

- To express x % as a fraction, we have  $x\% = \frac{x}{100}$
- To express  $\frac{a}{b}$  as a percent, we have  $\frac{a}{b} = \left(\frac{a}{b} \times 100\right)\%$
- If 'A' is R % more than 'B', then 'B' is less than 'A' by

OR

If the price of a commodity increases by R % , then the reduction in consumption, not to increase the expenditure is  $\left(\frac{100R}{[100+R]}\right)\%$ 

• If 'A' is R % less than 'B', then 'B' is more than 'A' by

OR

If the price of a commodity decreases by R % , then the increase in consumption, not to increase the expenditure is  $\left\{\frac{100R}{[100-R]}\right\}$  %

- If the population of a town is 'P' in a year, then its population after 'N' years is  $P \cdot \left(1 + \left(\frac{R}{100}\right)\right)^N$
- If the population of a town is 'P' in a year, then its population 'N' years ago is  $\frac{P}{\left(1+\left(\frac{R}{100}\right)\right)^N}$

## Percentage Change

- Percentage Change =  $\frac{\text{Final Value} \text{Initial Value}}{\text{Initial Value}} \times 100$
- For two successive changes of a% and b%, Total Percentage Change =  $(a + b + \frac{ab}{100})\%$