Examrace: Downloaded from examrace.com [https://www.examrace.com/]

For solved question bank visit doorsteptutor.com

[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

NET, IAS, State-SET (KSET, WBSET, MPSET, etc.), GATE, CUET, Olympiads etc.: Physics MCQs (Practice_Test 22 of 35)

Get unlimited access to the best preparation resource for competitive exams : <u>get</u> questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]- for all subjects of your exam.

- 1. The gibb's function G in thermodynamics is defined as G = H-TS where H is the enthalpy, T is the temperature and S is the entropy. In an isothermal, isobaric, reversible process, G
 - a. remains constant, but not zero
 - b. varies linearly
 - c. varies non-linearly
 - d. is zero
- 2. Average of squares of displacements of particles in Brownian motion is
 - a. Directly proportional to temperature-T
 - b. directly proportional to viscosity-h
 - c. Directly proportional to radius of the particle-a
 - d. directly proportional to time-t
- 3. The order of magnitude of the mean free path of a diatomic molecule at STP is
 - a. 1 cm
 - **b.** 10 2 cm
 - c. 10 5
 - d. 10 8 cm
- 4. In the Vander Walls equation $(p + a/v^2)(v-b) = RT$
 - a. 'a' and 'b' are the corrections for the cohesive forces
 - b. 'a' and 'b' are the corrections for the volume occupied by. The molecules
 - c. 'a' is the correction for the cohesive forces and 'b' is the correction for the volume occupied by the molecules
 - a. 'a' is the correction for the volume occupied by the molecules and 'b' is the correction for the cohesive forces
- 5. After Joule-Thomson expansion, the gas is
 - a. always heated
 - b. heated or cooled depending upon the initial temperature of the gas

- c. neither heated nor cooled at any temperature
- d. always cooled
- 6. If a black body radiation in a spherical cavity of volume V satisfies the relation, PVh = constant during a quasi-static isentropic process, then the numerical value of h should be
 - a.
 - $b. \frac{5}{3}$
 - $\frac{C}{3}$
 - d.
- 7. Consider the following statements regarding the paramagnetic materials:
 - a. Permanent magnetic moments interact with each other weakly.
 - b. Magnetization M varies inversely with absolute temperature T.
 - c. Magnetization M is much greater than the magnetic filed strength H.
 - d. Large permanent magnetization can be.Induced in these materials.
 - Of these statements
 - a. 1 and 2 are correct
 - b. 2 and 4 are correct
 - c. 1,2 and 3 are correct
 - d. 1,3 and 4 are correct
- 8. If a Rowland ring of mean radius 0.1 m had 2000 turns of wire wound on a ferromagnetic core of h = 1000, then, for a magnetizing current of 1.5 A, the magnetic field in the core would be
 - a. 3 T
 - b. 6 T
 - c. 9 T
 - d. 12 T
- 9. The electric potential point (x, y) in the x-y plane is given by V = -kxy. The field intensity at a distance 'r' from the origin varies as
 - a. r2
 - b. r
 - c. 1/r
 - d. 1/r2
- 10. A fast electron having a kinetic energy of $3.0 \times 10 17$ Joule enters a region of space containing a uniform electric field of E = 1000 volts/m. The field is parallel to the

electron's motion and in a direction such as to decelerate it. The distance traveled by the electron before it is brought to rest (charge of electron = $1.6 \times 10 - 19$ C) will be

- a. 1.875 cm
- b. 18.75 cm
- c. 187.5 cm
- d. 1875 cm
- 11. At a point 20 cm from the centre of a uniformly k charged dielectric sphere of radius 10 cm, the electric field is 100 V/m. The electric field at3 cm from the centre of the sphere will be
 - a. 150 V/m
 - b. 125 V/m
 - c. 120 V/m
 - d. zero
- 12. Two identical charged spheres of density 2.4 gm/cm3 suspended from the same point by strings of equal length 1.5 m, make an angle of 30 degree in air. If suspended in a liquid of density 0.8 gm/cm3 the angle remains the same. The dielectric constant of the liquid is
 - a. 1.2
 - b. 1.5
 - c. 2.4
 - d. 3.0
- 13. Which one of the following statements regarding the electric fields E1 = xi + yi and E2 = xy2 i + y3 j is correct?
 - a. Both E1 and E2 can represent electrostatic field
 - b. Neither E1 nor E2 can represent electrostatic field
 - c. Only E1 can represent electrostatic field
 - d. Only E2 can represent electrostatic field
- 14. The equivalent capacitance of the given circuit is
 - a. 0.5 m f
 - **b**. 1 m f
 - c. 6.75 m f
 - d. 9 m f
- 15. Consider the following statements: In electronics, capacitors are used for
 - a. tuning the resonant circuits.
 - b. bypassing alternating voltages.
 - c. storing electrical energy in the form of magnetic field.

- d. blocking D C voltages from parts of an electrical circuit.
- Of these statements
 - a. 1,2 and 4 are correct
 - b. 1 and 2 are correct
 - c. 2,3 and 4 are correct
 - d. 1 and 4 are correct