Examrace: Downloaded from examrace.com [https://www.examrace.com/]
For solved question bank visit doorsteptutor.com
[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]
NET, IAS, State-SET (KSET, WBSET, MPSET, etc.), GATE, CUET, Olympiads etc. Mathematics Objective Questions Paper 23

Doorsteptutor material for competitive exams is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]for all subjects of your exam.
$\mathrm{Q}-1$. The number of surjections from $\mathrm{A}=1,2, \ldots \mathrm{n}, n \geqslant 2$ onto $\mathrm{B}=(\mathrm{a}, \mathrm{b})$ is
(a) $n P_{2}$
(b) $2^{n}-1$
(c) $2^{n}+1$
(d) none of these

Q-2. Set A has 3 elements and set B has 4 elements. The number of injection that can be defined from A to B is
(a) 144
(b) 12
(c) 24
(d) 64

Q-3. $f: R \rightarrow R$ is a function defined by $\mathrm{f}(\mathrm{x})=10 x-7$. if $g=f^{-1}$, then $\mathrm{g}(\mathrm{x})=$
(a) $\frac{1}{10 x-7}$
(b) $\frac{1}{10 x+7}$
(c) $\frac{x+7}{10}$
(d) $\frac{x-7}{10}$

Q-4. The number of objective function from set A to itself when A contains 106 elements is
(a) 106
(b) $(106)^{2}$
(c) 106 !
(d) 2^{106}

Q-5. $f(x)=|\sin x|$ has an inverse if its domain is
(a) $[0, \pi]$
(b) $\left[0, \frac{\pi}{2}\right]$
(c) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
(d) none

Q-6. If the area of the triangle formed by points z , iz and $\mathrm{z}+\mathrm{iz}$ is 50 square units, then $|\mathrm{z}|$ is
(a) 5
(b) 10
(c) 15
(d) none of these

Q-7. if area of triangle on plane turned by number $\mathrm{z}, \omega z a n d z+\omega z i s 4 \sqrt{3}$, then $|\mathrm{z}|$ is
(a) 4
(b) 2
(c) 6
(d) 3
$\mathrm{Q}-8$. The locus of point z satisfying $\operatorname{Re}\left(\frac{1}{z}\right)=k$, when k is a non-real real number is
(a) Straight line
(b) A circle
(c) An ellipse
(d) A hyperbola
$\mathrm{Q}-9$. The locus of point z satisfying $\operatorname{Re}\left(z^{2}\right)=0$ is
(a) Point of straight lines
(b) Circle
(c) Hyperbola
(d) None of these

Q-10. If a_{1}, a_{2}, a_{3} are in G. P with common ratio r, then value of $a_{3}>4 a_{2}-3 a_{1}$ holds if
(a) $1<r<3$
(b) $-3<r<-1$
(c) $\mathrm{r}<3$ or $\mathrm{r}<1$
(d) none of these

Q -11 Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in A. P. and $|\mathrm{a}|<1,|\mathrm{~b}|<1,|\mathrm{c}|<1$.
If $x=1+a+a^{2}+\ldots \infty$

$$
\begin{aligned}
& y=1+b+b^{2}=\ldots \infty \\
& z=1+c+C^{2}=\ldots \infty
\end{aligned}
$$

Then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
(a) $A \cdot P$
(b) $G . P$
(c) $H \cdot P$
(d) None

Q-12. Let $S \subset(0, \pi)$ denotes set of values of x .
If $8^{1+|\cos x|+\cos ^{2} x+\left|\left(\cos ^{3}\right) x\right|}+\ldots \infty=4^{3}$, then $s=$
(a) $\frac{\pi}{3}$
(b) $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
(c) $\left(-\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
(d) $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$

Q-13. If $\log _{x} a, a\left(\left(\frac{x}{2}\right)\right)$ and $\log _{x} b$ are in G. P. then x is equal to
(a) $\log _{a}\left(\log _{b} a\right)$
(b) $\log _{a}(\log \mathrm{a})$
(c) $-\log _{a}\left(\log _{a} b\right)$
(d) $\log b$

Q-14. IF $a \in z,(x-a)(x-10)+1=0$ has integral roots, then values of a are
(a) 10,8
(b) 12,10
(c) 12,8
(d) none

Q-15. If $(3 x)^{2}+\left(27 x 3^{1 \backslash p}-15\right) x+4=0$ has equal roots, then p is equal to
(a) 0
(b) 2
(c) $-\frac{1}{2}$
(d) None

Q-16. The value of a for which $(1-2 a) x^{2}-6 a x-1=0$ and $a x^{2}-x+1=0$ have atleast one root, in common are
(a) $0,-\frac{1}{2}$
(b) $\frac{1}{2}, \frac{2}{9}$
(c) $\frac{2}{9}$
(d) $0, \frac{1}{2}, \frac{2}{9}$

Q-17. There are m copies of each n different books in libaray. The number of ways in which one or more than one book can be selected as
(a) $m^{n}+1$
(b) $(m+1)^{n}-1$
(c) $(n+1)^{n}-m$
(d)

Q-18. The number of ways in which one or more balls. can be selected out of 10 white, 9 green and 7 blues balls, is
(a) 892
(b) 881
(c) 891
(d) 879

Q-19. The number of all 3 elements subsets of det $\left(a_{1}, a_{2}, a_{3} \ldots a_{n}\right)$ which contains ${ }_{a_{3}}$ is
(a) $n C_{3}$
(b) $n-1 C_{3}$
(c) $n-1 C_{2}$
(d) None of these

Q-20. The number of terms which are free from radical signs in expansion $\left(y^{\left(\frac{1}{5}\right)}+\left(x^{\left(\frac{1}{10}\right)}\right)\right)^{55}$ is
(a) 5
(b) 6
(c) 7
(d) None of these

Q-21. If sum of coefficient of $(a+b)^{n}$ is 4096, then greatest coefficient is
(a) 924
(b) 792
(c) 1594
(d) None of these

Q-22. 3 rd term in the expansion of $\left(\frac{1}{x}+\left(x^{\log _{10} x}\right)\right)^{5} \mathrm{x}>1$ is 1000 , then x is
(a) 100
(b) 1000
(c) 1
(d) $\frac{1}{\sqrt{10}}$

Q-23. If A is square matrix of order n, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to
(a) $|A|^{n} A$
(b) $|A|^{n-1} A$
(c) $|A|^{n-1} A$
(d) $|A|^{n-3} A$
$\mathrm{Q}-24$. If A is singular, then A adj A is matrix
(a) Identify
(b) Null
(c) Scalar
(d) None of these

Q-25. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $n \in N$, then A^{n} equals
(a) $2^{n} A$
(b) $2^{n-1} A$
(c) $n A$
(d) None of these

Q-26. If $\left|\begin{array}{ccc}x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ Z^{n} & Z^{n+2} & Z^{n+3}\end{array}\right|=(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$, then n equals
(a) 1
(b) -1
(c) 2
(d) -2
$Q-27$. The orthocenter of the triangle formed by lines $x y=0$ and $x+y=1$ is
(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(b) $\left(\frac{1}{3}, \frac{1}{3}\right)$
(c) $(0,0)$
(d) $\left(\frac{1}{4}, \frac{1}{4}\right)$

Q-28. The area of figure formed by $a x \pm b y \pm=0$ is
(a) $\frac{C^{2}}{a b}$
(b) $\frac{2 C^{2}}{a b}$
(c) $\frac{C^{2}}{2 a b}$
(d) None of these

Q-29. The equation $a x^{2}+b y^{2}+c x+c y=0$ represent pair of lines if
(a) $c=0$
(b) $a+b=0$
(c) $c=0 \operatorname{or} a+b=0$
(d) None of these

Q-30. If an equilatual triangle is inscribed in circle $x^{2}+y^{2}=a^{2}$, then length of each side is
(a) $\sqrt{2 a}$
(b) $\frac{\sqrt{3}}{2} a$
(c) $\sqrt{3} \mathrm{a}$
(d) None of these
$\mathrm{Q}-31$. The lotus rectum of parabola whose focal chord is $\mathrm{PS} Q$ is such that $\mathrm{SP}=3$ and $\mathrm{SQ}=2$ is given by
(a) $\frac{24}{5}$
(b) $\frac{12}{5}$
(c) ${ }_{\frac{6}{5}}$
(d) None of these

Q-32. Find c such that straight line $y=4 x+c$ touches curve $\frac{x^{2}}{4}+y^{2}=1$ is
(a) 0
(b) 3
(c) 2
(d) Infinite

Q-33. The eccentricity of the conic represented by $x^{2}-y^{2}-4 x+4+4 y+16=0$ is
(a) 1
(b) $\sqrt{2}$
(c) 2
(d)
Q-34. If $f(x+2 y, x-2 y)=x y$, then $f(x, y)$ equal
(a) $\frac{x^{2}-y^{2}}{8}$
(b) $\frac{x^{2}-y^{2}}{4}$
(c) $\frac{x^{2}+y^{2}}{2}$
(d) $\frac{x^{2}-y^{2}}{2}$

Q-35. The period of $\mathrm{f}(\mathrm{x})=\sin ^{4} x+\cos ^{4} x$ is
(a)
(b) $\frac{\pi}{2}$
(c) 2π
(d) None of these

Q-36. $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+1}-1}{\sqrt{x^{2}+9}-3}$ is equal to
(a) 3
(b) 4
(c) 1
(d) 2

Q-37. $\lim _{x \rightarrow 0}\left(\left(\frac{x+5}{x-1}\right)\right)^{x}$ is equal to
(a) e^{6}
(b) e^{s}
(c) e
(d) 1

Q-38. If $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then $f(x)$ is differentiable on
(a) $[-1,1]$
(b) R- $[-1,1]$
(c) R- $(-1,1)$
(d) None of these

Q-39. If $f(x)=\mid x-a) \phi(x)$ is continuous, then
(a) $f^{\prime}(a+)=\phi(a)$
(b) $f^{\prime}(a)=-\phi(a)$
(c) $f^{\prime}\left(a^{+}\right)=\phi^{\prime}\left(a^{-1}\right)$
(d) None of these

Q-40. If $f(x)=\sqrt{x^{2}+9}$ then $\lim _{x \rightarrow 0} \frac{f(x)-f(4)}{x-5}$ equals
(a) $\frac{5}{4}$
(b) $-\frac{4}{5}$
(c) $\frac{4}{5}$
(d) None of these

