Examrace: Downloaded from examrace.com [https://www.examrace.com/]
For solved question bank visit doorsteptutor.com
[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Mathematics Objective Questions Paper 20

Doorsteptutor material for competitive exams is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]for all subjects of your exam.

Q-1. $2 \cos ^{-1} x=\cos ^{-1}\left(2 x^{2}-1\right)$ holds true for all
(a) $|x| \leqslant 1$
(b) $0 \leqslant x \leqslant 1$
(c) $|x|<\frac{1}{2}$
(d) none of these

Q-2. $(\cos \mathrm{A}+\cos B)(\cos 2 A+\cos 2 B)$ is equal to
(a) $\frac{\cos 4 a+\cos 4 B}{2(\cos \mathrm{~A}-\cos B)}$
(b) $\frac{\cos 4 A \pm \cos 4 B}{2(\cos A-\cos B)}$
(c) $\frac{\cos 4 A \pm \cos 4 B}{4(\cos A-\cos B)}$
(d) None of these

Q-3. if $\mathrm{f}(\mathrm{x})=\log \left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2 x}{1+x}\right)$ is equal to
(a) $f(x)$
(b) $2 \mathrm{f}(\mathrm{x})$
(c) $4 \mathrm{f}(\mathrm{x})$
(d) none of these

Q-4. if $f(x)=\frac{|x|}{x} ; x \neq 0$; then $|f(x)-f(-x)|$ is equal
(a) 0
(b) 2
(c) 1
(d) none of these

Q-5. If80 $=\pi$, then $\cos 70+\cos \theta$ is equal
(a) 0
(b) 2
(c) 1
(d) none of these

Q-6. Which of the following is true?
(a) Domain of $\sin ^{-1} x$ is $\left[-\frac{\pi}{2} \cdot \frac{\pi}{2}\right]$
(b) Range of $\cos \sin \left(\sin ^{-1} x+\cos ^{-1} x\right)$ is $\{1\}$
(c) Range of $\cos \left(\sin ^{-1} x+\cos ^{-1} x\right) i s[-1,1]$
(d) Range of $\cos ^{1} x$ is $\left[0, \frac{\pi}{2}\right]$

Q-7. Which of the following function is inverse to itself?
(a) $f(x)=\frac{1-x}{1+x}$
(b) $f(x)=3^{\log x}$
(c) $f(x)=\frac{1-x^{2}}{1+x^{2}}$
(d) $f(x)=2^{2(x-1)}$

Q-8. The value of $\sec ^{2}\left(\tan ^{1} 2\right)+\operatorname{cose} e C^{2}\left(\cos ^{-1} 3\right)$ is equal to
(a) 5
(b) 15
(c) 13
(d) none of these

Q-9. Solution of the equation $\cos ^{1}(\sqrt{3} x)+\cos ^{-1} x=\frac{\pi}{2}$ is given by
(a) $\pm \frac{1}{2}$
(b) $-\frac{1}{2}$
(c) $\frac{1}{2}$
(d) none of these

Q-10. If $f(x)=\frac{x}{x-1}=\frac{1}{y}$, then $f(y)=$
(a) x
(b) $x-1$
(c) 1-x
(d) $1+x$

Q-11. If $\sin \alpha+\sin \beta+\sin \gamma=3$, then value of $\cos \alpha+\cos \beta+\cos \gamma=$
(a) 0
(b) 1
(c) 2
(d) 3

Q-12. $\tan \left(2 \sin ^{-1}\left(\frac{4}{5}\right)\right)$ is equal to
(a) $\frac{7}{24}$
(b) $\frac{-7}{24}$
(c) $-\frac{24}{7}$
(d) $\frac{24}{7}$
13. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\sin x-x}{x}\right) \cos \left(\frac{1}{x}\right)$ is equal to
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) none of these
14. if $f(x)=\left\{\begin{array}{cc}\frac{\sin [x]}{[x]}, & {[x] \neq 0,} \\ 0, & {[x]=0}\end{array}\right.$ then $\lim _{x \rightarrow 0} f(x)$
(a) is equal to 1
(b) is equal to 0
(c) is equal to -1
(d) does not exist
15. $\int\left(\left(\left(\left((e)^{e}\right)\right)^{e}\right)^{e}\right)^{e}\left(\left(\left(e^{o}\right)\right)^{x}\right) e^{x}$ is equal to
(a) $\frac{1}{2}\left(\left(\left(\left(G^{2}\right)\right)^{e}\right)^{o}\right)^{x}$
(b) $\left(\left(\left(e^{o}\right)\right)^{e}\right)^{x}$
(c) $\left(\left(\left(e^{o}\right)\right)^{e}\right)^{2 x}$
(d) $\frac{1}{2}\left(\left(\left(\theta^{e}\right)\right)^{o}\right)^{x}$
16. if $f(x)=|x-1|$, then
(a) $f\left(x^{2}\right)=(f(x))^{2}$
(b) $f(x+y)=f(x)+f(y)$
(c) $f(|x|)=|f(x)|$
(d) $f(x)$ is not derivable at $a=1$
17. $\lim _{n \rightarrow \infty}$

$$
\sum_{\frac{n-1}{n^{2}}}^{n} r
$$

Is equal to
(a) $\frac{1}{2}$
(b)
(c) $\frac{1}{4}$
(d) none of these
18. The value of $\int_{1}^{2} \frac{1}{x^{2}} e^{-1\left(x^{2}\right)} \mathrm{d} x$ is
(a) $\frac{1}{\sqrt{e}}+\frac{1}{e}$
(b) $\frac{1}{e}-\frac{1}{\sqrt{e}}$
(c) $\frac{1}{\sqrt{e}}-\frac{1}{e}$
(d) 0
19. $\int \frac{x+1}{(x+2)^{2}} e^{x} \mathrm{~d} x$ is equal to
(a) $\frac{-e^{2}}{(x+2)^{2}}$
(b) $\frac{e^{2}}{x+2}$
(d) None of these
20. $\lim _{x \rightarrow 0} \frac{1}{2}$
(a) Is equal to 0
(b) Tends to ∞
(c) Tends to $-\infty$
(d) Does not exit
21. $\lim _{x \rightarrow 0} x[x]$ is equal to
(a) 0 or 1
(b) 0 or -1
(c) 0
(d) none of these
22. $\int \sin x \sin 2 x \mathrm{~d} x$ is equal to
(a) $\frac{2}{3}$
(b)
(c) $\frac{\pi}{3}$
(d) none of these
23. $\int_{\pi / 2}^{\pi / 2} \frac{1}{\cos 2 x} d x=$
(a) $\log 3$
(b)
(c) $\frac{1}{3} \log 2$
(d) none of these
24. If $f(x)$ be any function which assumes only positive values and $f(x)$ exists, then $f(x)$ is equal to
(a) $f(x) \frac{\mathrm{d}}{\mathrm{d} x}(e 1(x)$
(b) $f(x) \frac{\mathrm{d}}{\mathrm{d} x}\{\log (f(x))\}$
(c) $f(x) \frac{\mathrm{d}}{\mathrm{d} x}\left\{e^{\log }\right\}$
(d) none of these

Q-25. $\lim _{x \rightarrow o} \frac{\left.(1+x)^{n}-1\right)}{x}$ is equal to
(a) 1
(b) n
(c) $n-1$
(d) none of these

Q-26. $\int \log x d x$ is equal to
(a) $\frac{1}{2}(\log x)^{2}$
(b) $\frac{1}{x}$
(c) $x \log x-x$
(d) none of these

Q-27. $\hat{\imath} \cdot(2 \hat{\jmath} \times 3 \hat{k})+\hat{\jmath} \cdot(2 \hat{k} \times \hat{3} j)+\hat{k} \cdot(2 \hat{\imath} \times \hat{3})$ is
(a) 18
(b) 0
(c) -18
(d) none of these
$\mathrm{Q}-28$. If the vectors $2 \hat{\jmath}+3 \hat{\jmath}-4 \hat{k}$ and $a \hat{\jmath}+\hat{\jmath}-b \hat{\jmath}+c \hat{k}$ are at right angles, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ can have values
(a) $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=-4$
(b) $\mathrm{a}=4, \mathrm{~b}=4, \mathrm{c}=5$
(c) $\mathrm{a}=4, \mathrm{~b}=4, \mathrm{c}=-5$
(d) $\mathrm{a}=4, \mathrm{~b}=-4, \mathrm{c}=-5$

Q-29. c_{1} and c_{2} are the centers of the two circle whose radius are $r_{r_{1}}$ and $r_{r_{2}}$. The two circle touch each other internally if
(a) $\left|C_{1} C_{2}\right|=r_{1}+r_{2}$
(b) $\left|C_{1} C_{2}\right|=\left|r_{1}-r_{2}\right|$
(c) $\left|C_{1} C_{2}\right|=r_{1}-r_{2}$
(d) $\left|C_{1} C_{2}\right|=r_{2}-r_{1}$
$\mathrm{Q}-30$. The length of perpendicular from the origin upload the line $\frac{x}{y}+\frac{y}{b}=1$ is
(a) $\frac{a b}{\sqrt{a^{2}+b^{2}}}$
(b) $\frac{-a b}{\sqrt{a^{2}+b^{2}}}$
(c) $\frac{|a b|}{\sqrt{a^{2}}+b^{2}}$
(d) none of these

Q-31. If cross product of two non-zero vectors is zero, then the vectors are
(a) Collinear
(b) Co-directional
(c) Co-initial
(d) Co-terminus

Q-32. The number of vectors of unit length perpendicular to vectors of unit length perpendicular to vectors $\hat{u}=\hat{\imath}+\hat{\jmath}$ and $\hat{v}=\hat{\jmath}+\hat{k}$, is
(a) one
(b) three
(c) two
(d) infinite
$\mathrm{Q}-33$. The line passing through $(0,1)$ and perpendicular to the line $x-2 y+11=0$ is
(a) $2 x-y+1=0$
(b) $2 x-y+3=0$
(c) $2 x+y-1=0$
(d) $2 x+y-2=0$

Q-34. The perpendicular distance of the origin from the line $3 x+4 y+1=0$ is
(a) -1
(b)
(c) $-\frac{1}{5}$
(d)

Q-35. If is the angle between two unit vectors \bar{a} and \bar{b}, then $\cos \theta$ is equal to
(a) $\bar{a}+\bar{b}$
(b) $\bar{a}-\bar{b}$
(c) $\bar{a} \cdot \bar{b}$
(d) $|\bar{a} \times \bar{b}|$

Q-36. If $\bar{a}, \bar{b}, \bar{c}$ are three vectors, then $[\bar{a}, \bar{b}, \bar{c}]$ is not equal to
(a) $[\bar{a}, \bar{c}, \bar{b}]$
(b) $[\bar{c}, \bar{a}, \bar{b}]$
(c) $-[\bar{a}, \bar{c}, \bar{b}]$
(d) none of these

Q-37. The acute angle between the lines $x-y=0$ and $y=0$ is
(a) 30°
(b) 45°
(c) 60°
(d) 75°

Q-38. The vertices of a triangle are $(0.3),(-3,0)$ and $(3,0)$. The orthocenter of the triangle is
(a) $(0,0)$
(b) $(0,3)$
(c) $(3,0)$
(d) $(-3,0)$

Q-39. The equation $(\hat{r}-(\hat{\imath}+\hat{\jmath})) \cdot(\hat{r}-(\hat{\jmath}+\hat{k}))=0$ represents
(a) pair of unites
(b) a pair of planes
(c) a spheres
(d) none of these

Q-40. The spheres $x^{2}+y^{2}+z^{2}+x+y+z-1=0$ and $x^{2}+y^{2}+z^{3}+x+y+z-5=0$
(a) Intersect in a plane
(b) Intersect in five points
(c) Do not intersect
(d) None of these

Q-41. If a line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$, its y-intercept is
(a) -4
(b) $\frac{4}{3}$
(c) $-\frac{4}{3}$
(d) none of these

Q-42. The lines $x+(k-1) y+1=0$ and $2 x+k^{2} y-1=0$ are at right angles if
(a) $k=1$
(b) $k>1$
(c) $k=-1$
(d) $|k|=0$
$\mathrm{Q}-43$. The distance of the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from the $\mathrm{x} y$ - plane is
(a) x
(b) y
(c) z
(d) $|\mathrm{z}|$
$\mathrm{Q}-44$. The line $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-3}{1}$ and $\frac{z-2}{0}=\frac{y-3}{0}=\frac{z-3}{0}$ are
(a) Parallel
(b) Coincident
(c) Skew
(d) Perpendicular

Q-45. The G. M of the numbers $3,3^{2}, 3^{3} \ldots 3^{n}$ is
(a) $3^{2 / 6}$
(b) $3^{(n-1) 2}$
(c) $3^{\left(\left(\frac{n}{2}\right)\right)}$
(d) $3^{(n+1) / 2}$

