Examrace: Downloaded from examrace.com [https://www.examrace.com/]

For solved question bank visit doorsteptutor.com

[https://www.doorsteptutor.com] and for free video lectures visit Examrace

YouTube Channel [https://youtube.com/c/Examrace/]

NET, IAS, State-SET (KSET, WBSET, MPSET, etc.), GATE, CUET, Olympiads etc.: Chemistry MCQs (Practice_Test 16 of 31)

Doorsteptutor material for competitive exams is prepared by world's top subject experts: get questions, notes, tests, video lectures and more [https://www.doorsteptutor.com/]-for all subjects of your exam.

- 1. Select the statement below that is correct
 - a. All compounds of carbonate (CO32-) phosphate (PO43-) and sulfide (S2-) are soluble
 - b. All compounds of nitrate (NO3-) and chlorate (ClO3-) are soluble
 - c. All compounds of hydroxide (OH-) are soluble
 - d. All compounds of the halogen ions (e. g. Cl-, Br-, I-) are insoluble
 - e. No response above is correct
- 2. Addition of sodium bromide, a very soluble salt, to a saturated solution of silver bromide, a slightly soluble salt, would cause:
 - a. the concentrations of silver ion, bromide ion and silver bromide to increase.
 - b. the concentration of bromide ion to increase and the concentration of silver ion to decrease.
 - c. the concentration of bromide ion to decrease and the concentration of silver ion to increase.
 - *a.* the concentration of bromide ion to decrease and the concentration of silver bromide to increase.
- 3. Addition of hydrochloric acid to a saturated solution of cadmium hydroxide (Cd (OH) 2, Ksp = $2.5 \times 10 14$) in water would cause:
 - a. the solubility of cadmium hydroxide to decrease.
 - b. the OH-concentration to decrease and the Cd2 + concentration to increase.
 - c. the concentrations of both Cd2 + and OH-to decrease.
 - d. the concentrations of both Cd2 + and OH-to increase.
 - e. no change in the solubility of Cd (OH) 2.
- 4. Given the following slightly soluble salts and solubility-product constants, which salt would be most soluble in pure water?
 - a. AgCl: $Ksp = 1.8 \times 10 10$.
 - b. AgBr: Ksp = $5.0 \times 10 15$.

- c. AgI: $Ksp = 8.3 \times 10 17$.
- d. AuCl: Ksp = $2.0 \times 10 13$.
- 5. The solubility of gold chloride (AuCl3) in pure water is $1.0 \times 10 6$ moles per liter. Calculate the solubility product constant of gold chloride in water.
 - a. N/A
 - b. N/A
 - c. N/A
 - d. N/A
- 6. Calculate the molar solubility of cadmium hydroxide (Cd (OH) 2) in pure water. For cadmium hydroxide, Ksp = $2.5 \times 10 14$
 - a. N/A
 - b. N/A
 - c. N/A
 - d. N/A
- 7. Calculate the molar solubility of cupric hydroxide (Cu (OH) 2, Ksp = $2.2 \times 10 20$) in a solution buffered at pH 8
 - a. N/A
 - b. N/A
 - c. N/A
 - d. N/A
- 8. Assume a solution containing 0.01 M stannous sulfide (SnS, Ksp = $1.0 \times 10 25$) and 0.01 M manganese sulfide (MnS, Ksp = $3.0 \times 10 15$). If sulfide ion (S2-) concentration is increased gradually without dilution of the solution, what will be the molar concentration of Sn2 + ion when manganese sulfide first starts to precipitate?
 - a. N/A
 - b. N/A
 - c. N/A
 - d. N/A
- 9. Which of the following statements is correct?
 - a. Most salts of alkali metal ions (K + , Na +), most nitrates, most sulfides and most hydroxides are soluble in water.
 - b. Most salts of alkali metal ions (K + , Na +) and most nitrates are insoluble in water and most sulfides and most hydroxides are soluble in water.
 - c. Most salts of alkali metal ions (K + , Na +) and most nitrates are soluble in water and most sulfides and most hydroxides are insoluble in water.
 - a. Most salts of alkali metal ions (K + , Na +) and most sulfides are insoluble in water and and most nitrates and most hydroxides are soluble in water.

- e. Most salts of alkali metal ions (K + , Na +) , most nitrates, most sulfides and most hydroxides are insoluble in water.
- 10. Which of the following salts is least soluble in otherwise pure water?
 - a. AgCl, $Ksp = 1.8 \times 10 10$
 - b. AuCl, Ksp = $2.0 \times 10 13$
 - c. AgI, Ksp = $8.3 \times 10 17$
 - d. AgBr, Ksp = $5.0 \times 10 15$
 - e. CuBr, Ksp = $5.3 \times 10 9$
- 11. Addition of silver nitrate (AgNO3) to a saturated solution of silver chloride (Ksp = $1.8 \times 10 10$) would cause:
 - a. the chloride ion concentration to be larger than that in the saturated solution.
 - b. the chloride ion concentration to be smaller than that in the saturated solution.
 - c. the chloride ion and silver ion concentrations to be larger than that in the saturated solution.
 - *a.* the chloride ion and silver ion concentrations to be smaller than that in the saturated solution.
 - e. no change in the chloride ion concentration.
- 12. Addition of solid silver chloride to a saturated solution of silver chloride (Ksp = $1.8 \times 10 10$) would cause:
 - a. the chloride ion concentration to be larger than that in the saturated solution.
 - b. no change in the chloride ion concentration.
 - c. the chloride ion and silver ion concentrations to be larger than that in the saturated solution.
 - *a.* the chloride ion and silver ion concentrations to be smaller than that in the saturated solution.
 - e. the chloride ion concentration to be smaller than that in the saturated solution.
- 13. The solubility of gold chloride (AuCl3 \Leftrightarrow Au3 ++ 3Cl-) in water is 1.04 × 10 6 mol/L. Calculate the value of the solubility-product constant, Ksp, for gold chloride.
- 14. The solubility-product constant for lead iodide (PbI2 \Leftrightarrow Pb2 ++ 2I-) is Ksp = 7.1 × 10 9. Calculate the molar solubility of lead iodide in otherwise pure water.
- 15. Calculate the molar solubility of lead iodide (PbI2 \Leftrightarrow Pb2 ++ 2I-, Ksp = 7.1 × 10 9) in a solution containing 0.10 M potassium iodide (KI), a very soluble salt.
- 16. What mimimum hydronium ion concentration (M) would be needed to prevent precipitation of cupric hydroxide (Cu (OH) $2 \Leftrightarrow \text{Cu}2 ++ 2\text{OH}$ -, Ksp = $2.2 \times 10 20$) from a solution containing 0.010 M Cu2 + ion?