Examrace: Downloaded from examrace.com [https://www.examrace.com/]

For solved question bank visit doorsteptutor.com

[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Quantitative Ability (Part 5 of 9)

Doorsteptutor material for CMAT is prepared by world's top subject experts: get questions, notes, tests, video lectures and more <a href="mailto:https://www.doorsteptutor.com/Exams/CMAT/]- for all subjects of CMAT.

Directions: Answer these questions on the basis of the information given below:

Cities A and B are in different time zones. A is located 3000 km east of B. The table below describes the schedule of an airline operating non-stop flights between A and B. All the times indicated are local and on the same day.

Departure	Departure	Arrival	Arrival
City	Time	City	Time
В	8: 00 AM	A	3: 00 PM
A	4: 00 PM	В	8: 00 PM
Table Supporting: Quantitative Ability (Part 5 of 9)			

Assume that planes cruise at the same speed in both directions. However, the effective speed is influenced by a steady wind blowing from east to west at 50 km per hour.

- 1. What is the time difference between A and B?
 - a. 1 hour
 - b. 1 hour and 30 minutes
 - c. 2 hours
 - d. 2 hours and 30 minutes
 - e. Cannot be determined
 - Answer: a
- 2. What is the plane's cruising speed in km per hour?
 - a. 500
 - b. 700
 - c. 550
 - d. 600
 - e. Cannot be determined.
 - Answer: c

- 3. Consider four digit numbers for which the first two digits are equal and the last two digits are also equal. How many such numbers are perfect squares?
 - a. 1
 - *b*. 3
 - c. 2
 - d. 4
 - e. 0
 - Answer: a
- 4. In a tournament, there are n teams T1, T2, ... Tn, with n > 5. Each team consists of k players, k > 3. The following pairs of teams have one player in common: T1 & T2, T2 & T3, ... T n 1 & Tn, and Tn & T1. No other pair ofteams has any player in common. How many players are participating in the tournament, considering all the n teams together?
 - a. (n-1)(k-1)
 - **b.** n(k-1)
 - c. k(n-1)
 - d. n (k-2)
 - e. k(n-2)
 - Directions: Answer these questions on the basis of the information given below:
 - Let a1 = p and b1 = q, where p and q are positive quantities. Define an = pbn-1, bn = qbn-1, for even n > 1, and an = pan-1, bn = qan-1, for odd n > 1.
 - Answer: b
- 5. Which of the following best describes an + bn for even n?
 - a. $q(pq)_{\frac{1}{2}} n 1(p + q)_{\frac{1}{2}} n$
 - b. q(pq) = n 1(p + q)
 - c. $qp_{\frac{1}{2}} n 1 (p + q)$
 - d. $q_{\frac{1}{2}}$ n (p + q)
 - e. $q_{\frac{1}{2}} n (p + q)_{\frac{1}{2}} n$
 - Answer: b
- 6. If p = $\frac{1}{3}$ and q = $\frac{2}{3}$, then what is the smallest odd n such that an + bn < 0.01?
 - a. 15
 - b. 7
 - c. 13
 - d. 11
 - e. 9

• Answer: e