Examrace: Downloaded from examrace.com [https://www.examrace.com/]
For solved question bank visit doorsteptutor.com
[https://www.doorsteptutor.com] and for free video lectures visit Examrace YouTube Channel [https://youtube.com/c/Examrace/]

Quantitative Ability (Part 5 of 9)

Doorsteptutor material for CMAT is prepared by world's top subject experts: get questions, notes, tests, video lectures and more
[https://www.doorsteptutor.com/Exams/CMAT/]- for all subjects of CMAT.
Directions: Answer these questions on the basis of the information given below:
Cities A and B are in different time zones. A is located 3000 km east of B. The table below describes the schedule of an airline operating non-stop flights between A and B. All the times indicated are local and on the same day.

Departure	Departure	Arrival	Arrival
City	Time	City	Time
B	8: 00 AM	A	3: 00 PM
A	$4: 00 \mathrm{PM}$	B	8:00 PM
Table Supporting: Quantitative Ability (Part 5 of 9)			

Assume that planes cruise at the same speed in both directions. However, the effective speed is influenced by a steady wind blowing from east to west at 50 km per hour.

1. What is the time difference between A and B ?
a. 1 hour
b. 1 hour and 30 minutes
c. 2 hours
d. 2 hours and 30 minutes
e. Cannot be determined

- Answer: a

2. What is the plane's cruising speed in km per hour?
a. 500
b. 700
c. 550
a. 600
e. Cannot be determined.

[^0]3. Consider four digit numbers for which the first two digits are equal and the last two digits are also equal. How many such numbers are perfect squares?
a. 1
b. 3
c. 2
d. 4
e. 0

- Answer: a

4. In a tournament, there are n teams $\mathrm{T} 1, \mathrm{~T} 2, \ldots \mathrm{Tn}$, with $\mathrm{n}>5$. Each team consists of k players, $\mathrm{k}>3$. The following pairs of teams have one player in common: $\mathrm{T} 1 \& \mathrm{~T} 2, \mathrm{~T} 2$ \& $\mathrm{T} 3, \ldots \mathrm{~T} \mathrm{n}-1 \& \mathrm{Tn}$, and Tn \& T1. No other pair ofteams has any player in common. How many players are participating in the tournament, considering all the n teams together?
a. $(\mathrm{n}-1)(\mathrm{k}-1)$
b. $\mathrm{n}(\mathrm{k}-1)$
c. $\mathrm{k}(\mathrm{n}-1)$
d. $\mathrm{n}(\mathrm{k}-2)$
e. $k(n-2)$

- Directions: Answer these questions on the basis of the information given below:
- Let $\mathrm{a} 1=\mathrm{p}$ and $\mathrm{b} 1=\mathrm{q}$, where p and q are positive quantities. Define $\mathrm{an}=\mathrm{pbn}-1, \mathrm{bn}=$ qbn-1, for even $\mathrm{n}>1$, and an = pan-1, $\mathrm{bn}=$ qan-1, for odd $\mathrm{n}>1$.
- Answer: b

5. Which of the following best describes an + bn for even n ?
a. $q(p q)_{\frac{1}{2}} n-1(p+q)_{\frac{1}{2}} n$
b. $q(p q)_{\frac{1}{2}} \mathrm{n}-1(\mathrm{p}+\mathrm{q})$
c. $\mathrm{qp}_{\frac{1}{2}} \mathrm{n}-1(\mathrm{p}+\mathrm{q})$
d. $q_{\frac{1}{2}} n(p+q)$
e. $\mathrm{q}_{\frac{1}{2}} \mathrm{n}(\mathrm{p}+\mathrm{q})_{\frac{1}{2}} \mathrm{n}$

- Answer: b

6. If $\mathrm{p}={ }_{\frac{1}{3}}$ and $\mathrm{q}=\frac{\frac{2}{3}}{}$, then what is the smallest odd n such that $\mathrm{an}+\mathrm{bn}<0.01$? a. 15
b. 7
c. 13
d. 11
e. 9

- Answer: e

[^0]: - Answer: c

